
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 N

ov
em

be
r 

20
22

 

royalsocietypublishing.org/journal/rspb
Research
Cite this article: Aguiar de Souza Penha V et
al. 2022 Haemosporidian parasites and

incubation period influence plumage coloration

in tanagers (Passeriformes: Thraupidae).

Proc. R. Soc. B 289: 20221283.
https://doi.org/10.1098/rspb.2022.1283
Received: 4 July 2022

Accepted: 27 October 2022
Subject Category:
Ecology

Subject Areas:
ecology

Keywords:
sexual dichromatism, sexual selection, female

ornamentation, parasite prevalence,

Plasmodium, Parahaemoproteus
Author for correspondence:
Victor Aguiar de Souza Penha

e-mail: victoraspenha@gmail.com
© 2022 The Author(s) Published by the Royal Society. All rights reserved.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.6292019.
Haemosporidian parasites and incubation
period influence plumage coloration in
tanagers (Passeriformes: Thraupidae)

Victor Aguiar de Souza Penha1, Fabricius Maia Chaves Bicalho Domingos2,
Alan Fecchio3, Jeffrey A. Bell4, Jason D. Weckstein5, Robert E. Ricklefs6, Erika
Martins Braga7, Patrícia de Abreu Moreira8, Letícia Soares9, Steven Latta10,
Graziela Tolesano-Pascoli11, Renata Duarte Alquezar12, Kleber Del-Claro13 and
Lilian Tonelli Manica2

1Graduate Program in Ecology and Conservation, Federal University of Paraná, 81531-980, Curitiba, Paraná, Brazil
2Zoology Department, Federal University of Paraná, 81531-980, Curitiba, Paraná, Brazil
3Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET—Universidad Nacional de
la Patagonia San Juan Bosco, U9200, Esquel, Chubut, Argentina
4Department of Biology, University of North Dakota, 58202-9019, Grand Forks, USA
5Academy of Natural Sciences of Drexel University and Department of Biodiversity, Earth, and Environmental
Science, Drexel University, 19104, Philadelphia, PA, USA
6Department of Biology, University of Missouri–Saint Louis, Saint Louis, MO, USA
7Department of Parasitology, Federal University of Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
8Federal University of Ouro Preto, 35400-000, Ouro Preto, Minas Gerais, Brazil
9Research Associate, National Aviary, Pittsburgh, PA, USA
10Conservation and Field Research, National Aviary, 15212, Pittsburgh, PA, USA
11Zoology Department, Institute of Biological Sciences, University of Brasilia, 70910-900, Brasilia, Distrito
Federal, Brazil
12Animal Behavior Laboratory, Graduate Program in Ecology, University of Brasilia, 70910-900, Brasilia, Distrito
Federal, Brazil
13Behavioral Ecology and Interactions Laboratory, Graduate Program in Ecology and Conservation of Natural
Resources, Federal University of Uberlândia, 38405-240, Uberlândia, Minas Gerais, Brazil

VAdSP, 0000-0002-9036-3862; FMCBD, 0000-0003-2069-9317; AF, 0000-0002-7319-0234;
JAB, 0000-0001-9146-4318; JDW, 0000-0001-7941-5724; RER, 0000-0001-7649-8800;
EMB, 0000-0001-5550-7157; PdAM, 0000-0002-6020-449X; LS, 0000-0002-6933-8048;
SL, 0000-0003-3789-9470; GT-P, 0000-0001-8219-191X; RDA, 0000-0001-8294-722X;
KD-C, 0000-0001-8886-9568; LTM, 0000-0001-6005-7103

Birds are highly visually oriented and use plumage coloration as an
important signalling trait in social communication. Hence, males and
females may have different patterns of plumage coloration, a phenomenon
known as sexual dichromatism. Because males tend to have more complex
plumages, sexual dichromatism is usually attributed to female choice.
However, plumage coloration is partly condition-dependent; therefore,
other selective pressures affecting individuals’ success may also drive the
evolution of this trait. Here, we used tanagers as model organisms to
study the relationships between dichromatism and plumage coloration
complexity in tanagers with parasitism by haemosporidians, investment
in reproduction and life-history traits. We screened blood samples from
2849 individual birds belonging to 52 tanager species to detect haemospor-
idian parasites. We used publicly available data for plumage coloration,
bird phylogeny and life-history traits to run phylogenetic generalized
least-square models of plumage dichromatism and complexity in male
and female tanagers. We found that plumage dichromatism was more pro-
nounced in bird species with a higher prevalence of haemosporidian
parasites. Lastly, high plumage coloration complexity in female tanagers
was associated with a longer incubation period. Our results indicate an
association between haemosporidian parasites and plumage coloration
suggesting that parasites impact mechanisms of sexual selection, increasing
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differences between the sexes, and social (non-sexual)
selection, driving females to develop more complex
coloration.
ietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20221283
1. Introduction
Plumage coloration is an important signalling trait in birds,
because they are highly visually oriented organisms [1].
Males usually exhibit different patterns of plumage coloration
in comparison to females [2], a phenomenon known as sexual
dichromatism, indicating that sexual selection may be an
important force generating coloration differences in bird
species [3]. According to the female choice mechanism of
sexual selection, high-quality males are better able to compete
against other males and to attract mates [4]. In house finches
(Haemorhous mexicanus), for example, more brightly coloured
males initiated reproduction earlier and produced more
offspring [5], thus impacting their reproductive success [6].

Sexual dichromatism may also evolve in response to the
intensity of sexual selection, which may depend upon par-
ameters such as body size and life-history traits. In birds,
sexual dichromatism is inversely associated with body size,
such that sexual selection appears to be stronger in smaller
species [7]. This is the case in parrots, for example, and is
likely due to shorter pair bond duration and increased mate
turnover throughout their lifespan [8]. Therefore, larger species
tend to be monochromatic, with both sexes displaying either
conspicuous or dull coloration [7]. Life-history traits are impor-
tant predictors of plumage coloration because they reflect
patterns of survival and reproduction, and thus, individuals’
ability to attract mates. For instance, investment in reproduc-
tion may influence plumage coloration in birds as species
incubating for longer periods or incubating more eggs may
face a trade-off between colour investment and reproductive
output [9,10]. In Carduelis finches, a clade comprising 125
different species, melanin plumage complexity increases with
decreasing clutch size and incubation period [11].

Perhaps one of the strongest hypotheses that may explain
plumage coloration diversity in avian species is related to
parasitism. In this case, plumage coloration is an honest
signal because it is suggestive of genetic resistance to para-
sites and may signal increased reproductive ability [12].
Pigments, such as carotenoids, are also immune stimulators,
meaning that overuse of carotenoids in plumage coloration
may compromise other physiological functions associated
with the immune system [13]. Therefore, carotenoid depo-
sition may be an honest signal for parasite resistance (but
not pigments producing structural coloration; see [14]). Inten-
sely parasitized individuals usually have dull plumage
because of (i) an energetic imbalance between investing in
plumage coloration and mounting an immune response
against parasites [15] or (ii) direct damage to feathers by
parasites [16]. Also, parasites that do not directly reduce cir-
culating carotenoids may depress the utilization of this
pigment [15]. For example, plumage coloration saturation,
brightness and carotenoid chroma were associated with hae-
mosporidian parasite occurrence and prevalence in different
passerine species, and differences between parasitized and
non-parasitized individuals are greater in sexually dimorphic
species [17–19]. Also, a positive association between infection
by haemosporidian parasites and dichromatism was found in
waterfowl [20], several suboscine passerines [21] and birds in
general ([22]; but see [23]; [24,25]). These studies provide sup-
port for the hypothesis that species under stronger sexual
selection are also more generally burdened by parasites.
The authors argue that secondary traits involved in attracting
mates may be energetically costly to individuals, and only
those individual males that are parasite resistant may be
more likely chosen by females [26]. Furthermore, genes
related to immunity and feather pigmentation have been
shown to be under similar selective pressures in birds,
suggesting that resistance to parasites may be a key factor
in female choice [27]. Haemosporidians (Order Haemospor-
ida, genera Plasmodium and Parahaemoproteus) are vector-
borne protozoans that infect avian blood cells and other tis-
sues for reproduction. Since they are distributed worldwide
and parasitize almost all avian families [28] with different
degrees of dichromatism, these malarial pathogens provide
an ideal study system to understand the relationships
between avian host coloration and pathogen prevalence.

Tanagers (Passeriformes: Thraupidae) are songbirds with
diverse life-history traits and elaborate secondary sexual
characteristics, notably plumage coloration and song com-
plexity. Within this large avian family, sexual traits have
been the focus of important macroevolutionary studies (e.g.
[29–31]). Since tanagers are hosts to several haemosporidian
parasites [32–35], they provide an interesting opportunity
for studying the relationship between plumage coloration
and parasitism in birds. Also, dichromatism is widespread
in the family Thraupidae, occurring at some level in most
of the species [36], and both sexes have complex plumage
coloration, although it is greater in males [30]. In a study of
dichromatism, which analysed 351 species of tanagers,
Shultz & Burns [30] found that dichromatism was more influ-
enced by evolutionary changes in males than in females [30].
The importance of life-history traits on the evolution of
plumage coloration in tanagers is also dependent on the
light environment, with species showing brighter plumage
in open rather than closed habitats [30]. The impact of hae-
mosporidian infections on the dichromatism and coloration
complexity in tanager species remains unknown. Since dichro-
matism is a good proxy for the strength of sexual selection,
understanding the impact of parasitism on this trait will pro-
vide a better understanding of how parasites are involved in
the decision-making process during mate choice. Here we
aim to unravel this host–parasite relationship as well as to
understand how avian life-history traits influence the evol-
ution of plumage coloration in tanagers. Specifically, we
tested whether dichromatism and plumage complexity were
negatively related to haemosporidian parasite prevalence (pro-
portion of infected individuals) and lineage richness (number
of different parasite lineages, weighted by total number of
screened individuals), species clutch size, incubation period
and body length. We expect that highly parasitized species
(higher prevalence and / or parasite lineage richness) would
be more dichromatic, smaller in size and invest less in
reproduction (lower clutch size and incubation period).
2. Material and methods
(a) Data collection
We screened 2849 individuals from 52 Thraupidae species col-
lected between 2007 and 2018. Since we did not have data to
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distinguish males from females and adults from juveniles for
most individuals at capture, we did not have data on the differ-
ences in infections between males and females. Therefore, we
used overall parasitism of each species and then relate those to
coloration metrics from published data. Each species included
in the study was represented by at least five captured individuals
(sample size ranging from 5 to 591 individuals per species; elec-
tronic supplementary material, table S1). Samples included in the
study came from eight countries and 92 locations, including
Argentina [32,37], Brazil [19,34,35,38–41], Dominican Republic
[42,43], Ecuador [44], Honduras, Mexico [33], Nicaragua and
Peru [32]. We either banded all individuals and extracted a
blood sample or collected blood samples from host specimens.
We then screened these individual samples for the presence of
haemosporidian parasites. All fieldwork followed each country’s
data collection laws, under specific licences (see ethics section at
end of this paper). Some individual host specimens and their
associated blood and/or tissue samples were collected and depos-
ited in museum collections including Instituto Nacional de
Pesquisas Amazônicas, Museu Paraense Emílio Goeldi, Field
Museum of Natural History, Museo de Zoología Alfonso
L. Herrera and the Academy of Natural Science of Drexel
University.
1283
(b) Haemosporidian lineage identification
We extracted DNA following the protocols described by [23,45],
or by using the Qiagen DNeasy 96 Blood and Tissue kit (Qiagen,
Valencia, CA). We screened DNA samples for the presence of
Parahaemoproteus or Plasmodium. Specific molecular protocols
can be found in [19,35,37,38,41–44,46]. Briefly, we amplified a
standard barcoding region from the cytochrome b gene of
haemosporidian parasites using nested PCR and then sanger-
sequenced samples with positive amplifications. We used BIO-
EDIT v. 7.2.0 [47] to align sequences and conduct a local blast
for comparison with the MalAvi database [48] to identify haemo-
sporidian genetic lineages found in our samples. As our two
different PCR protocols amplified two different regions of the
cytochrome b gene, we compared longer mtDNA fragments
[23,37,43] through a local BLAST on the MalAvi database [48].
We only categorized identities to the species level when if the
sanger sequences were 100% identical to the MalAvi lineage
from a given fragment, which was the case for all the lineages
we found. To account for uneven sampling, we calculated ‘line-
age richness’ of a host species as the total number of host
lineages found each divided by the total number of screened
individuals per host species. We accounted for a difference
between haemosporidian parasite prevalence and the parasite
lineage richness, in the sense that different lineages may differ
in virulence within hosts [49], and that a greater parasite lineage
richness may impose a greater burden to avian hosts [50–52].
Finally, we calculated haemosporidian (Plasmodium and Parahae-
moproteus) parasite prevalence as the number of infected host
individuals divided by the total number of screened individuals
for every host species. Also, here we are treating Parahaemoproteus
as a distinct genus from Haemoproteus, following recent discov-
eries and advancements in the haemosporidian parasite
phylogeny [53–55].
(c) Host phylogeny and life-history traits
We used the tanager phylogeny from [56] and the drop.tip func-
tion from the ape package 5.0 [57] in R to prune the tree to the 52
species from our host screening database. We used the Hand-
book of the Birds of the World Alive (https://www.hbw.com;
[58] to extract body length, incubation period (in days), and
clutch size (number of laid eggs) for all tanager species.
(d) Museum data collection and plumage coloration
data

To assess male and female plumage coloration complexity and
dichromatism for the tanager species in our dataset we used
data from Shultz & Burns [30], who generated data from
museum specimens. Shultz & Burns [30] used spectrophoto-
metric measurements to generate a reflectance tetrahedral
colour space [59]. They also produced data on maximum, aver-
age and variance of colour span (the Euclidian distance among
points inside the tetrahedron), colour volume (total volume
from the polygon connecting all points in the tetrahedron), maxi-
mum, average and hue disparity (differences in angles from the
vectors within the tetrahedron), average chroma (average dis-
tance between achromatic centre and a data point inside the
tetrahedron for all members of a given species) and average bril-
liance (average reflectance). All of these variables were referred
to as whole-plumage tetrahedral colour space (WPTCS) measure-
ments. We used the average whole-plumage colour span as our
dichromatism measurement (dichromatism from herein).
Higher values of dichromatism (i.e. larger distances among
points in the tetrahedron) mean that males and females have
large differences in their plumage coloration patterns. We used
Shultz & Burn’s [30] PC1 axis from a principal component analy-
sis including all WPTCS measurements for males and females as
our plumage complexity measurement per sex (male and female
plumage complexity from herein). Positive PC1 values (with
reversed sign to facilitate interpretation) indicate higher values
of all WPTCS measurements, suggesting more complex plumage,
higher contrast among plumage sites, and larger regions of
variation in WPTCS measurements [30]. In our dataset, dichro-
matism ranged from 0.016 to 0.406, whereas Male PC1 ranged
from −6.368 (low complexity) to 5.982 (high complexity) and
Female PC1 ranged from −4.506 (low complexity) to 6.574
(high complexity).
(e) Statistical analysis
We corrected the explanatory and response variables using the
normalize function from BBmisc package v. 1.12 [60] in R, to nor-
malize the distributions whenever necessary, and to scale all
numeric variables using the scale function to keep all variables
comparable. To test whether sexual dichromatism is related to
haemosporidian parasitism and avian life-history traits, we
built a phylogenetic generalized least-square (PGLS) model
including dichromatism as response variable, and parasite line-
age richness, haemosporidian parasite prevalence, clutch size,
incubation period and body length as explanatory variables.
We also built two separated PGLS models, one for each sex, to
test the relationship between plumage complexity, parasitism
(haemosporidian parasite prevalence and parasite lineage
richness), clutch size, incubation period and cand body length.

We tested for the absence of multi-collinearity with the var-
iance inflation factor (VIF), using the VIF function from the
regclass package v. 1.6 [61] for all models. We used a conservative
threshold of two for GVIFð1=(2�df ) to collinear predictors. We built
both Ornstein–Uhlenbeck and Brownian Motion PGLS models
and used Akaike information criterion values to test for model
fit. We used an information-theoretic approach [62] to test the
importance of the explanatory variables and the dredge function
from the MuMIn package v. 1.46 [63] to generate all possible
models with the explanatory variables. We used model aver-
aging with the model.avg function from the MuMIn package to
calculate the model-averaged estimates [64] whenever the best
model had a weight less than 0.8. We selected the most important
explanatory variables by assessing the estimate, conditional s.e.
and 95% confidence interval (CI). All analysis were performed
in R software version 2019 [65].

https://www.hbw.com


Table 1. Model-averaged estimates, s.e. and 95% confidence intervals of variables in the model using the dichromatism, female and male plumage
complexities. Significant variables are marked with asterisks.

variables estimate s.e. 95% C.I.

dichromatism

intercepta 0.33 0.09 0.13, 0.52*

haemosporidian parasite prevalence 0.07 0.02 0.01, 0.13*

lineage richness −0.04 0.18 −0.40, 0.31
clutch size (three eggs)a −0.08 0.06 −0.21, 0.04
cutch size (four eggs)a −0.10 0.05 −0.22, 0.00
incubation period −0.02 0.01 −0.04, −0.00*
body length −0.03 0.03 −0.10, 0.02
male plumage complexity

intercepta 0.45 0.08 0.28, 0.61*

haemosporidian parasite prevalence 0.06 0.03 −0.00, 0.13
lineage richness 0.13 0.24 −0.35, 0.61
clutch size (three eggs)a −0.11 0.06 −0.24, 0.02
clutch size (four eggs)a −0.14 0.12 −0.40, 0.11
incubation period 0.01 0.03 −0.05, 0.07
body length −0.01 0.03 −0.08, 0.05
female plumage complexity

intercepta 0.41 0.07 0.27, 0.55*

haemosporidian parasite prevalence 0.01 0.03 −0.04, 0.07
lineage richness 0.08 0.19 −0.38, 0.39
clutch size (three eggs)a −0.02 0.06 −0.15, 0.10
clutch size (four eggs)a −0.03 0.09 −0.23, 0.16
incubation period 0.06 0.02 0.01, 0.11*

body length 0.01 0.03 −0.05, 0.08
aReference factor for clutch size was two eggs.
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3. Results
In our sampled tanager species (n = 52), mean body size was
14.68 ± 2.94 cm, mode clutch size was two eggs (n = 30
species) and mean incubation period was 13.40 ± 1.06 days.
We found 149 haemosporidian lineages, including 62 Parahae-
moproteus and 87 Plasmodium lineages, in 1063 infected
individual tanagers, which is 37% overall haemosporidian
prevalence.

(a) Plumage dichromatism
We found that more dichromatic tanager species had higher
haemosporidian parasite prevalence and shorter incubation
periods (table 1; electronic supplementary material, table
S2; figure 1). Parasite lineage richness, clutch size and body
size were not significantly important variables in this
model (table 1; electronic supplementary material, table S2).

(b) Male and female plumage complexities
The best models of female and male plumage coloration are
included in electronic supplementary material, table S2. We
found that more complex female plumages were associated
with species having longer incubation periods (table 1; elec-
tronic supplementary material, table S2; figure 2). No
variables explained male plumage complexity (table 1;
electronic supplementary material, table S2).
4. Discussion
Here we provide results from a broad study of haemospori-
dian parasites from tanager species sampled from 92
locations throughout the family’s geographical distribution.
Using parasite prevalence and identified parasite lineages,
we built phylogenetic models to test the relationship between
parasite prevalence and lineage richness with plumage
dichromatism and coloration complexity. Our main result
suggests that parasite-mediated sexual selection may influ-
ence plumage dichromatism in tanagers. In brief, more
dichromatic species had higher parasite prevalence and over-
all shorter incubation periods. We also found that highly
complex female plumages were associated with longer
incubation periods.

As dichromatism was positively related to higher hae-
mosporidian parasite prevalence, in accordance with our
predictions, it is suggestive that host species with a higher
proportion of infected individuals appear to be under stron-
ger sexual selection mediated by parasites [12]. These results
may imply that individuals (usually males) that are able to
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invest in plumage coloration without compromising other
physiological functions, such as immunity [12], may be
more likely chosen (usually by females) for mating, resulting
in the evolution of more pronounced dichromatism in these
species. Similar results have been found for rodents [66]
and salamanders [67], suggesting that the relationship
between dichromatism and parasites may be widespread in
animals. Furthermore, Jaiswal et al. [27] found an evolution-
ary correlation between immune and feather pigmentation
genes for 11 non-passerine species, which supports the
Hamilton & Zuk [12] hypothesis of parasite-mediated
sexual selection. Also, cell-mediated immunity from better
supplemented females may pass onto nestlings, as stated
by the transgenerational epigenetics hypothesis [68]. Thus,
along with Jaiswal et al. [27] and Krüger et al. [68], our results
indicate that female tanagers select highly conspicuous males
as plumage serves as an honest signal for greater immune
defenses against haemosporidian parasites, which may have
important associations with improved immunity for nest-
lings. A focus for future studies is the relationship among
gene expression, dichromatism and parasites in tanagers,
which will help elucidate both the impacts of sexual selection
on genes related to immunity and the overall relationship
between immune function and feather pigmentation. Never-
theless, we found an association between sexual selection
and infection by haemosporidian parasites. Hence, our
results could potentially help in identifying disease reservoirs
in the wild, since dichromatic species tend to be more
parasitized than monochromatic species.

We also found that species incubating for a shorter period
were more dichromatic. Our result suggests that individuals
investing in plumage coloration may face a trade-off between
ornamentation and incubation. Therefore, we propose two
non-mutually exclusive hypothesis. (i) Natural selection may
exceed sexual selection pressure in species with longer incu-
bation periods due to increased risk of nest predation. Also,
in these species, nest concealment and reduced nest attentive-
ness should reduce the likelihood of predator detection. In
support of this hypothesis, Drury & Burroughs [69] found
more evolutionary transitions from exposed to concealed
nests in dichromatic icterids, compared to monomorphic
species. However, support for this hypothesis is not universal
with incubation influencing dichromatism in icterids [69] and,
an independent association between incubation and dichroma-
tism among 69 passerine species [70]. (ii) We also propose that
individuals’ large investments in plumage coloration may
deplete resources for parental care, especially in systems
under high sexual selective pressures [71]. It is already known
that some species such as parrots (Order Psittaciformes)
invest more in incubation length and have higher immu-
nity [72], and thus these species may direct resources to nest
concealment [73] and clutch size [74] in detriment to plumage
coloration, as also demonstrated by our results. Nevertheless,
we suggest that future studies explore the connections between
nest shape, nest attentiveness, immunity, parasitism and dichro-
matism in birds, to better comprehend these relationships.
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Finally, in addition to less dichromatism, we found that
female but not male plumage coloration complexity was
related to the length of the incubation period. This was con-
trary to our expectations, since we expected that females
incubating for a longer period would have decreased
resources available to produce more conspicuous coloration.
Furthermore, females are solely responsible for incubation
in the majority of passerine species, with some males also
contributing to parental care [70,75]. However, our results
are intriguing because they support the hypotheses that
female traits may be under selective pressure due to social
competition for non-sexual resources, such as territory, food
or nesting sites [76]. For example, females with a larger
white wing patch in pied flycatchers (Ficedula hypoleuca)
[77] and with a more conspicuous rump in common kestrels
(Falco tinnunculus) [9] had a higher competitive ability, com-
pared to other females. Therefore, female tanagers with a
higher competitive ability may be more likely to invest both
in reproduction (longer incubation) and plumage coloration
(higher plumage coloration complexity).

Tanagers with their diversity of life-history traits, and
coloration are an ideal system for understanding the complex
interplay between sexually selected traits and parasitism. Our
results demonstrate that within such a diverse group, sexual
selection has produced higher trait variability in those species
under higher risk of infection. Additional work is warranted
to determine whether these traits serve as honest signals of
immune response to parasitism.
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