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Abstract
To	assess	the	importance	of	variation	in	observer	effort	between	and	within	bird	atlas	
projects	and	demonstrate	the	use	of	relatively	simple	conditional	autoregressive	(CAR)	
models	for	analyzing	grid-	based	atlas	data	with	varying	effort.	Pennsylvania	and	West	
Virginia,	United	States	of	America.	We	used	varying	proportions	of	randomly	selected	
training	 data	 to	 assess	whether	 variations	 in	 observer	 effort	 can	 be	 accounted	 for	
using	CAR	models	and	whether	such	models	would	still	be	useful	for	atlases	with	in-
complete	data.	We	then	evaluated	whether	the	application	of	these	models	influenced	
our	assessment	of	distribution	change	between	two	atlas	projects	separated	by	twenty	
years	(Pennsylvania),	and	tested	our	modeling	methodology	on	a	state	bird	atlas	with	
incomplete	 coverage	 (West	 Virginia).	 Conditional	 Autoregressive	models	 which	 in-
cluded	observer	effort	and	landscape	covariates	were	able	to	make	robust	predictions	
of	species	distributions	in	cases	of	sparse	data	coverage.	Further,	we	found	that	CAR	
models	without	landscape	covariates	performed	favorably.	These	models	also	account	
for	variation	in	observer	effort	between	atlas	projects	and	can	have	a	profound	effect	
on	the	overall	assessment	of	distribution	change.	Accounting	for	variation	in	observer	
effort	in	atlas	projects	is	critically	important.	CAR	models	provide	a	useful	modeling	
framework	for	accounting	for	variation	in	observer	effort	 in	bird	atlas	data	because	
they	are	relatively	simple	to	apply,	and	quick	to	run.

K E Y W O R D S
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1  | INTRODUCTION

1.1 | Use of atlases

Grid-	based	 biological	 atlases,	 especially	 of	 birds,	 have	 become	 in-
creasingly	 popular	 ways	 of	 documenting	 species’	 status	 and	 distri-
butions	since	the	first	large-	scale	efforts	were	initiated	in	the	1960s	
(Gibbons,	Donald,	Bauer,	Fornasari,	&	Dawson,	2007).	Expanding	net-
works	of	amateur	surveyors	have	enabled	the	completion	of	bird	atlas	

projects	 covering	 geographic	 scales	 ranging	 from	 counties,	 through	
states,	countries,	and	even	continents	(e.g.,	Hagemeijer	&	Blair,	1997).	
Increasingly,	bird	and	other	biological	atlas	data	are	being	utilized	to	
investigate	large-	scale	environmental	issues,	notably	pertaining	to	cli-
mate	change	(e.g.,	Gillings,	Balmer,	&	Fuller,	2015;	Huntley,	Altwegg,	
Barnard,	 Collingham,	 &	 Hole,	 2012;	 Matthews,	 Iverson,	 Prasad,	 &	
Peters,	2011;	Thomas	&	Lennon,	1999;	Zuckerberg,	Woods,	&	Porter,	
2009)	 and	 species	 conservation	 (e.g.,	 Araújo,	 Thuiller,	 Williams,	 &	
Reginster,	2005;	Boakes	et	al.,	2010;	van	der	Hoek	et	al.,	2015).	Atlas	
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data	 are	 especially	 useful	 for	 developing	 climate	 envelope	 models,	
which	can	predict	future	distributions	under	climate	change	scenarios,	
thereby	informing	large-	scale	and	long-	term	conservations	plans	(e.g.,	
Beale,	Baker,	Brewer,	&	Lennon,	2013;	Coetzee,	Robertson,	Erasmus,	
Van	Rensburg,	&	Thuiller,	2009;	Virkkala	&	Lehikoinen,	2014).

1.2 | Variation in effort and false negatives

Because	most	bird	atlas	projects	rely	on	citizen	scientists	to	complete	
the	majority	of	the	field	surveys,	field	methods	are	designed	to	promote	
mass	participation	with	the	aim	of	achieving	comprehensive	spatial	cov-
erage	(Greenwood,	2007).	Inevitably,	this	leads	to	trade-	offs	between	
data	 quality	 and	 coverage	 (Robertson,	 Cumming,	 &	 Erasmus,	 2010;	
Szabo,	Butchart,	Possingham,	&	Garnett,	2012),	such	as	the	adoption	
of	somewhat	flexible	field	protocols	which	often	do	not	impose	stand-
ardization	of	survey	effort.	This	lack	of	structure	results	in	spatial	varia-
tion	in	observer	effort,	with	the	highest	effort	often	expended	in	areas	
with	habitats	or	bird	communities	of	most	interest	to	amateur	survey-
ors	 (e.g.,	 Szabo,	Davy,	Hooper,	&	Astheimer,	 2007;	 Tulloch,	Mustin,	
Possingham,	Szabo,	&	Wilson,	2013).	Further,	 accessibility	may	con-
strain	spatial	coverage,	such	that	areas	at	a	greater	distance	from	cent-
ers	of	human	populations	often	receive	the	lowest	effort,	especially	if	
there	is	a	lack	of	accessible	roads	or	paths	(McCarthy,	Fletcher,	Rota,	
&	Hutto,	 2012;	 Syfert,	 Smith,	&	Coomes,	 2013).	Hence,	 spatial	 bias	
can	result	in	significant	taxonomic	bias,	that	is,	under-	representation	of	
certain	species	or	species	groups	(Robertson	et	al.,	2010).

When	repeat	atlases	projects	are	used	to	assess	shifts	in	species’	
distributions,	changes	in	survey	effort	can	result	in	biased	measures	
of	 changes	 in	 range	 margins	 (Kujala,	 Vepsäläinen,	 Zuckerberg,	 &	
Brommer,	2013).	It	is	especially	important,	therefore,	that	estimates	
of	changes	 in	distribution	between	atlas	periods	 include	an	assess-
ment	of	changes	 in	survey	effort.	Many	published	bird	atlases	have	
not	 accounted	 for	 variation	 in	 survey	 effort	 when	 producing	 esti-
mated	 changes	 in	 range	 size,	 and	 indeed,	 not	 all	 bird	 atlases	 have	
adequately	collected	data	to	measure	survey	effort.	The	application	
of	species	distributions	models	 (SDM)	 is	one	way	of	accounting	for	
biases	due	to	variable	survey	effort.	Species	distribution	models	are	
algorithms	 that	 “identify	 a	mathematical	 or	 logical	 function	 linking	
species’	 occurrences	 and	a	 set	of	predictors”	 (Kamino	et	al.,	 2012).	
A	 multitude	 of	 different	 SDMs	 have	 been	 developed	 and	 applied	
to	 ecological	 data	 (e.g.,	Aizpurua,	 Paquet,	Brotons,	&	Titeux,	 2015;	
Comte	&	Grenouillet,	2013;	Elith,	Kearney,	&	Phillips,	2010;	Rocchini	
et	al.,	2011),	but	accounting	for	false	negatives	 is	a	persistent	chal-
lenge	(Chefaoui	&	Lobo,	2008;	Kéry,	2011;	Rocchini	et	al.,	2011).	A	
failure	to	detect	a	species	in	a	given	area	could	be	because	the	habitat	
is	not	suitable,	or	it	could	merely	be	due	to	insufficient	survey	effort	
or	 inappropriate	 survey	 protocols.	 Developing	 survey	 protocols	 to	
maximize	the	likelihood	of	detection	across	multiple	species	is	chal-
lenging,	and	the	probability	of	detecting	all	species—given	their	pres-
ence—is	almost	always	less	than	one	(Kéry,	2011).	Occupancy	models	
(MacKenzie	et	al.,	2006)	are	increasingly	used	to	account	for	nonper-
fect	detection	in	biological	atlas	data	(e.g.,	Broms,	Johnson,	Altwegg,	
&	Conquest,	 2014).	These	models	 are	 based	on	 capture–recapture	

theory	and	hence	rely	on	repeated	site	visits	to	model	both	species	
occurrence	and	detectability	(MacKenzie	et	al.,	2006).	Unfortunately,	
data	 captured	 by	 bird	 atlas	 projects	 are	 often	 highly	 unstructured	
and	may	include	opportunistic	data,	and	highly	variable	sequences	of	
survey	effort	between	blocks,	and	over	multiple	years	 (e.g.,	Wilson,	
Brauning,	&	Mulvihill,	2012).	Further,	data	capture	during	first	gen-
eration	atlases	was	often	not	sophisticated	enough	to	retain	a	per-
manent	record	of	the	visit	history,	or	even	visit	years,	to	each	block.	
Hence,	application	of	occupancy	models	 is	not	always	feasible,	and	
such	models	can	be	computationally	challenging	(Broms	et	al.,	2014;	
Kéry,	Gardner,	&	Monnerat,	2010),	which	is	a	major	hurdle	if	practi-
tioners	with	limited	resources	are	to	apply	them	to	large	numbers	of	
species.

1.3 | Aims

In	 this	 study,	 we	 use	 data	 from	 the	 Atlas	 of	 Breeding	 Birds	 in	
Pennsylvania,	 henceforth	 the	 “PBBA	 I”	 (Brauning,	 1992;	 field-
work	 1983–1989),	 and	 the	 Second	 Atlas	 of	 Breeding	 Birds	 in	
Pennsylvania,	 henceforth	 the	 “PBBA	 II”	 (Wilson	 et	al.,	 2012;	 field-
work	2004–2009),	to	explore	the	use	of	a	SDM	approach	to	account	
for	variation	 in	observer	effort,	both	within	and	between	repeated	
atlas	projects.	We	apply	the	methods	to	data	from	the	West	Virginia	
Breeding	Bird	Atlas	 II	 project,	 henceforth	WVBBA	 II	 (unpublished;	
fieldwork	 2009–2014),	 to	 demonstrate	 that	 relatively	 simple	 con-
ditional	 autoregressive	 (CAR)	models	 offer	 a	 useful	 framework	 for	
modeling	 species	 distributions	 using	 atlas	 data,	 by	 incorporating	
information	on	broad-	scale	landscape	features	and	observer	effort.	
Throughout	this	study,	we	use	the	term	“occupancy	probability”	as	
shorthand	 for	 “occupancy	 and	 detection	 probability.”	 Our	 models	
predict	species	occurrences	based	on	hypothetical	but	realistic	lev-
els	of	survey	effort	per	block	and	hence	we	do	not	explicitly	model	
detection	probabilities.

Specifically,	we	test	the	following	hypotheses:

1. Spatial	 (CAR)	 models	 are	 effective	 at	 predicting	 species’	 occu-
pancy	 probabilities	 for	 bird	 atlases	 with	 incomplete	 data

2. Spatial	(CAR)	models	are	superior	to	nonspatial	models	at	predict-
ing	species’	occupancy	probabilities

3. Accounting	for	variation	in	observer	effort	improves	model	fit

2  | METHODS

2.1 | Data

The	PBBA	I	established	a	survey	grid	based	on	U.S.	Geological	Survey	
(USGS)	 7.5-	min	 topographic	 quadrangle	 maps;	 dividing	 each	 USGS	
quadrangle	 into	 six	 atlas	 “blocks,”	 the	 bottom-	right	 of	which	 being	
designated	as	 a	 “priority”	 block.	This	 resulted	 in	4,937	atlas	blocks,	
including	787	priority	blocks,	of	3.75’	longitude	and	2.5’	latitude	(ap-
proximately	5.2	×	4.62	km)	across	the	state	of	Pennsylvania	(Brauning,	
1992).	Priority	blocks	were	targeted	for	more	thorough	coverage	than	
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other	blocks.	Fieldwork	was	completed	by	approximately	2,000	volun-
teers	in	the	years	1983–1989.	The	PBBA	II	(2004-2009)	was	a	repeat	
effort	with	very	minor	changes	to	field	survey	protocols.	Although	the	
median	change	in	block	effort	between	atlas	projects	was	an	increase	
of	5	hr	(mean	=	8.68,	SD	=	33.67),	there	was	not	a	uniform	increase	in	
effort	across	all	blocks.	Not	only	were	the	changes	in	effort	not	evenly	
distributed	across	the	state	(Wilson	et	al.,	2012),	but	effort	was	lower	

than	PBBA	I	in	37%	of	blocks.	It	should	be	noted	that	details	of	survey	
effort	in	each	block	(times	and	duration	of	individual	visits)	 in	PBBA	
I	 are	 longer	available,	but	 the	database	does	have	a	 record	of	 total	
effort	hours.

Blocks	for	the	WVBBA	II	(2009–2014),	developed	for	the	WVBBA	I	
(1984–1989;	 Buckelew	&	Hall,	 1994),	were	 delineated	 in	 the	 same	
way	 as	 the	 PBBA	 blocks.	This	 resulted	 in	 2,653	 atlas	 blocks	 across	
the	state	of	West	Virginia,	469	of	which	were	designated	as	priority	
blocks.	Due	to	a	lower	population	density,	and	consequently	smaller	
volunteer	pool,	block	coverage—in	2009–2014—for	the	WVBBA	II	was	
incomplete	in	comparison	with	the	PBBA	II.	No	bird	records	were	sub-
mitted	for	580	atlas	blocks	(21.9%),	and	observer	effort	exceeded	1	hr	
in	less	than	half	of	blocks	(48.2%).	However,	coverage	of	the	469	pri-
ority	blocks	in	WVBBA	II	was	comprehensive,	with	a	mean	of	19.6	hr	
(SE	=	0.65)	of	survey	effort	expended	per	block.	Like	the	Pennsylvania	
atlas,	spatial	distributions	of	observer	effort	in	the	WVBBA	II	were	not	
uniform,	consisting	of	fairly	comprehensive	coverage	in	the	Allegheny	
Mountains	and	lower	elevation	“panhandle”	(eastern	half	of	the	state),	
but	very	patchy	coverage	across	much	of	the	Allegheny	Plateau	(west-
ern	half	of	the	state;	Figure	2).

2.2 | Study species

We	tested	our	hypotheses	on	Pennsylvania	atlas	data	for	six	species:	
Ruffed	Grouse	(Bonasa umbellus),	American	Kestrel	(Falco sparverius),	
Carolina	Wren	(Thryothorus ludovicianus)	(Figure	1),	Ovenbird	(Seiurus 

F IGURE  1 Carolina	Wren	Thryothorus ludovicianus	(photo	credit:	
A.	Wilson)

F IGURE  2 Survey	effort	in	the	West	
Virginia	Breeding	Bird	Atlas	II	(2009–2014)

Survey effort (hr)
Priority blocks

0
0.1 – 5
5.1 – 20
>20

Non priority blocks
0
0.1 – 5
5.1 – 20
>20
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aurocapillus),	 Cerulean	 Warbler	 (Dendroica cerulea),	 and	 Henlow’s	
Sparrow	 (Ammodramus henslowii).	 These	 species	 were	 chosen	 be-
cause	they	provided	a	representative	sample	across	abundance	and	
habitat	gradients.	Among	these,	six	species	(Table	1)	are	localized	spe-
cies	(Henslow’s	Sparrow,	found	in	4.6%	of	blocks),	species	with	state-
wide	distributions	(Ovenbird,	American	Kestrel)	and	range	restricted	

species	(Carolina	Wren,	absent	from	most	of	the	northern	one-	third	
of	 the	 state);	 forest	 obligates	 (Ruffed	 Grouse,	 Ovenbird,	 Cerulean	
Warbler),	 a	 grassland	 obligate	 (Henslow’s	 Sparrow),	 a	 generalist	
(Carolina	Wren);	increasing	species	(Ovenbird,	Carolina	Wren)	and	de-
clining	species	 (Ruffed	Grouse,	American	Kestrel,	Cerulean	Warbler,	
Henslow’s	Sparrow).

Block detections (% of all)
Global Moran’s 
I (PBBA II)PBBA I PBBA II

Ruffed	Grouse 2,782	(56.4) 1,870	(37.9) 0.316

American	Kestrel 2,938	(60.0) 2,558	(51.8) 0.260

Carolina	Wren 2,070	(42.0) 3,487	(70.6) 0.472

Ovenbird 3,674	(74.5) 4,168	(84.4) 0.425

Cerulean	Warbler 836	(17.0) 776	(15.7) 0.251

Henslow’s	Sparrow 364	(7.4) 229	(4.6) 0.246

TABLE  1 Recorded	block	detection	of	
the	six	study	species,	in	both	Pennsylvania	
Atlas	periods,	and	the	spatial	
autocorrelation	in	block	detections	(Global	
Moran’s	I)

Covariate Subtype
Mean value 
(SE)

Global 
Moran’s I z- score Data source

%	Forest All 62.47	(0.37) 0.77 53.47 a

Deciduous 50.87	(0.39) 0.846 58.82 a

Mixed 11.08	(0.21) 0.82 57.09 a

Conifer 0.51	(0.027) 0.66 46.36 a

Core 34.97	(0.35) 0.752 52.4 a

Edge 27.51	(0.14) 0.648 45.06 a

Young	forest 0.18	(0.006) 0.548 38.71 a

%	Water 1.77	(0.087) 0.304 21.4 a

%	Wetland All 1.29	(0.041) 0.893 62.13 a

Emergent 1.07	(0.037) 0.892 62.07 a

Woody 0.22	(0.009) 0.893 62.1 a

%	Farmland All 23.52	(0.29) 0.716 49.77 a

Grassland 13.66	(0.16) 0.664 46.16 a

Row	crop 9.72	(0.17) 0.736 51.21 a

%	Developed All 10.9	(0.21) 0.757 52.73 a

Open	(e.g.,	lawn) 6.03	(0.069) 0.689 47.97 a

Low	density 3.04	(0.084) 0.724 50.39 a

Medium	density 1.24	(0.051) 0.665 46.44 a

High	density 0.6	(0.044) 0.673 47.91 a

Medium	+	high 1.84	(0.088) 0.695 48.63 a

%	Reclaimed	strip	mines 0.37	(0.021) 0.514 38.74 a,b

Stream	density	(m/km2) 1,072	(4.97) 0.490 34.11 c

River	density	(m/km2) 88.1	(5.92) 0.131 11.34 c

Forested	stream	density	(m/km2) 728.8	(4.76) 0.642 44.66 a,c

Mean	elevation	(m) 377.5	(2.19) 0.923 64.19 d

Elevation	range	(m) 165.5	(1.37) 0.637 44.34 d

aNational	Land	Cover	Data	2006	(Fry	et	al.,	2011).
bAbandoned	Mine	Land	Inventory	(PA	DEP	2009).
cNetworked	Streams	of	Pennsylvania	(ERRI	1998).
dNational	Elevation	Dataset,	USGS.

TABLE  2 Spatial	autocorrelation	of	
landscape	covariates	among	atlas	blocks	
(Global	Moran’s	I).	p < .0001	for	all	z-	tests
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We	used	the	models	developed	for	the	PBBA	II	 to	produce	pre-
dicted	probabilities	of	block	occupancy	for	136	species	(i.e.,	those	that	
were	found	in	at	least	20	blocks)	in	WVBBA	II.

2.3 | Data analysis

The	predicted	probability	of	occurrence	by	block	was	modeled	using	
Hierarchical	Logistic	Regression	in	WinBUGS	for	each	species	(Lunn,	
Thomas,	Best,	&	Spiegelhalter,	2000).	The	model	took	the	form:	

where pi	is	the	predicted	probability	of	occurrence	in	block	i,	α	is	the	
intercept,	βk	is	the	parameter	estimate	for	s	landscape	covariates	χ,	γi	is	
a	correction	factor	to	account	for	observer	effort	(i.e.,	deviation	from	
a	specified	“standard”),	δi	is	the	spatial	effect,	and	ε	is	random	error.

Landscape	covariates	were	 selected	by	modeling	 recorded	pres-
ence/absence	using	a	stepwise	 (by	AIC)	 logistic	model	 in	program	R	
(package	MASS;	Venables	&	 Ripley,	 2002).	 Between	 8	 and	 12	 can-
didate	models	were	tested	for	each	species.	Candidate	models	were	
selected	based	on	expert	opinion	and	exploratory	analysis	of	habitat	
associations	(Wilson	et	al.,	2012).	There	were	26	candidate	landscape	
covariates	 (Table	2).	 Land	 cover	 data	were	 from	 Landsat	 ETM+	 de-
rived	data	(c.	2005;	Fry	et	al.,	2011).	The	extent	of	reclaimed	surface	
mine	grassland	was	estimated	by	 intersecting	areas	 identified	 in	the	
Abandoned	Mine	Inventory	data	for	2009	(PA	DEP,	2009)	with	grass-
land	and	herbaceous	land	cover	types.

Effort	effects	were	modeled	after	Link	and	Sauer	(2007),	using	the	
formula:	

where B	is	the	standardized	number	of	hours	(e.g.,	mean	or	median),	
and	C	and	D	are	estimated	parameters	that	determine	the	shape	of	
the	relationship	between	hours	and	probability	of	detection.	This	for-
mulation	enables	estimation	of	effort	effects	 that	 range	 from	 linear	
(C = 0,	D = 1),	to	diminishing	returns	(C = 0,	0	<	D < 1),	and	diminishing	
returns	with	an	asymptote	(C < 0,	D > 0).	This	function	provides	a	mul-
tiplier;	such	that	if	B = 30,	the	multiplier	would	be	>1	for	blocks	that	
receive	<30	hr	of	survey	effort—increasing	the	predicted	probability	
of	 occurrence	 in	 blocks	with	 low	 effort.	 In	 the	 above	 example,	 the	
multiplier	would	equal	1	for	survey	effort	of	30	hr.

Spatial	effects	were	included	using	a	Gaussian	CAR	model,	which	
accounts	 for	 spatial	 autocorrelation	 in	 lattice	 data,	 such	 as	 gridded	
atlas	 blocks.	 Spatially	 explicit	 models	 are	 “expected	 to	 yield	 better	
predictions”	(Bahn	et	al.,	2006)	than	nonspatial	models.	 In	ecological	
terms,	 such	 models	 incorporate	 important	 spatial	 information	 that	
may	relate	to	unknown	effects	of	bird	population	dynamics	and	un-
derlying	environmental	variation.	Spatial	autocorrelation	was	assessed	
using	global	Moran’s	I	test	statistic	using	ESRI’s	Spatial	Statistics	Tool.	
A	Moran’s	 I	 value	 close	 to	 zero	 indicates	 spatial	 randomness	while	
a	 positive	 value	 (up	 to	 1)	 indicates	 positive	 spatial	 autocorrelation.	

Statistical	significance	of	Moran’s	I	was	tested	using	z-	tests	(Z	score	is	
based	on	the	Randomization	Null	Hypothesis	computation).	The	com-
putation	of	spatial	autocorrelation	was	based	on	Queen	contiguity	and	
Euclidean	distance	(Anselin,	2005).

Models	 were	 implemented	 using	 Markov	 chain	 Monte	 Carlo	
(MCMC)	simulation	in	WinBUGS.	Vague	normal	prior	distributions	(0,	
0.0001)	were	used	 to	 begin	 the	MCMC	 sampling.	Models	were	 fit-
ted	with	5,000	iterations	following	a	minimum	1,000	sample	burn-	in.	
Model	convergence	was	checked	by	examining	trace	plots	for	all	pa-
rameters	(Lunn,	Jackson,	Best,	Thomas,	&	Spiegelhalter,	2012).	Most	
models	showed	convergence	after	a	few	hundred	iterations,	but	mod-
els	applied	to	the	sparser	WVBBA	II	species	data	required	up	to	6,000	
iterations	to	reach	convergence.

To	 cross-	validate	 our	 models	 and	 test	 our	 hypothesis	 that	 spa-
tial	models	are	effective	at	providing	predictions	for	bird	atlases	with	
incomplete	data,	we	ran	five	models	for	each	of	the	six	test	species	
(PBBA	II	data):

1. all—using	 data	 from	 100%	 of	 atlas	 blocks
2. 25%	random—models	trained	using	25%	of	blocks,	and	tested	on	
the	remaining	75%

3. 50%	random—models	trained	using	50%	of	blocks,	and	tested	on	
the	remaining	50%

4. 75%	random—models	trained	using	75%	of	blocks,	and	tested	on	
the	remaining	25%

5. Priority	 blocks—models	 trained	 using	 only	 priority	 blocks,	 which	
comprise	16.5%	of	all	blocks,	and	tested	on	the	remaining	83.5%

Model	 accuracy	was	 evaluated	 for	 test	 data	 using	 the	 area	 under	
the	receiver	operating	characteristic	(ROC)	curve,	commonly	denoted	as	
area	under	the	curve	 (AUC).	Area	under	the	curve	values	of	0.5	 imply	
that	model	accuracy	is	no	better	than	random,	while	AUCs	of	0.8	or	more	
are	considered	good,	and	values	of	0.9	or	more	are	considered	excellent	
(Brotons,	Herrando,	Estrada,	Pedrocchi,	&	Martin,	2008).	The	AUC	for	
test	data	was	 calculated	 in	package	pROC	of	program	R	 (Robin	et	al.,	
2011).	However,	because	AUC	has	received	some	criticism	(e.g.,	Lobo,	
Jiménez-	Valverde,	&	Real,	2008),	we	included	an	additional	measure	of	
model	accuracy:	the	Point	Biserial	Correlation	coefficient	(CORR),	which	
is	a	special	case	of	Pearson’s	correlation	coefficient	that	measures	the	re-
lationship	between	a	continuous	and	a	binary	variable,	as	recommended	
by	Kraemer	(2006).

We	tested	our	hypothesis	that	spatial	models	are	superior	to	non-
spatial	models	at	predicting	the	presence/absence	using	four	different	
nested	models	for	each	species:

4a. full	 (landscape	 characteristics	+	spatial	 effects	+	effort)
4b. landscape	characteristics	+	spatial	effects
4c. spatial	effects	+	effort
4d. landscape	characteristics	+	effort

Models	 4a	 through	 4d	 used	 the	 75%	 random	 block	 data	 for	
model	 training	 (see	model	4).	Models	were	 compared	using	Deviance	
Information	Criterion	(DIC).

logit(pi) = α +

(

S
∑

k=1

βkχik

)

+ γi + δi + ε

f(γi) = exp [D(γi∕B)
c−1]∕C
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Our	third	hypothesis,	that	incorporating	observer	effort	effects	
improves	 model	 fit,	 was	 implicitly	 tested	 by	 comparing	 models	
4a	with	4c,	and	4b	with	4d.	We	also	 investigated	the	relationship	
between	effort	 and	predicted	occupancy	by	 running	models	with	
varying	 “standard”	 amounts	of	 effort	 (B),	 ranging	 from	2	hr	up	 to	
50	hr,	per	block;	 including	models	with	standard	effort	of	14	 (the	
median	block	effort	in	PBBA	II)	and	21	hr	(mean	block	effort).	Effort	
was	modeled	as	a	function	of	two	estimated	parameters	(after	Link	
&	 Sauer,	 2007),	 which	 allowed	 for	 a	 variety	 of	 relationships	 be-
tween	field	survey	hours	expended	and	the	probability	of	detecting	
a	species	 in	each	block.	Hence,	the	modeled	relationship	was	not	
necessarily	 linear;	 reflecting	 diminishing	 returns	 with	 increasing	
effort.

Finally,	we	 demonstrated	 the	 extent	 to	which	 changes	 in	 effort	
substantially	 affect	 bird	 atlas	 results,	 by	 making	 predictions	 using	
a	“standard”	40	hr	of	effort	across	all	blocks	in	both	the	PBBA	I	and	
PBBA	II.	A	priori,	we	expected	that	because	overall	effort	was	lower	in	
PBBA	I	than	PBBA	II,	the	effects	of	modeling	presence/absence	under	
a	scenario	of	high	effort	would	increase	the	number	of	predicted	block	
occupied	in	the	PBBA	I	more	so	than	for	the	PBBA	II.	Our	expectation	
was	 therefore	 that	decreases	 in	 the	number	of	occupied	blocks	be-
tween	the	atlases	would	otherwise	have	been	underestimated,	while	
increases	would	be	overestimated.	The	models	estimating	change	 in	
the	number	of	occupied	blocks	 included	all	 the	data	 (model	1),	 and	
spatial	 and	effort	parameters,	 but	did	not	 include	 landscape	covari-
ates	(e.g.,	model	4c)	henceforth	denoted	as	model	1c.	We	chose	these	
reduced	models	because	 land	cover	data	were	not	 available	 for	 the	
period	of	the	PBBA	I.	For	further	justification	of	this	approach,	see	the	
comparison	of	models	4a	through	4d	in	results.	We	ran	this	model	for	
species	found	in	at	least	40	blocks	during	both	atlases:	151	species	or	
88%	of	the	172	species	confirmed	to	have	bred	in	both	PBBA	I	and	
PBBA	II.

To	assess	changes	 in	block	occupancy	between	atlas	efforts,	we	
used	a	relative	change	measures:	

and:	

3  | RESULTS

Data	from	the	two	Pennsylvania	atlases	show	that	there	 is	a	strong	
relationship	 between	 changes	 in	 observer	 effort	 (hours	 of	 effort)	
and	 changes	 in	 the	 number	 of	 species	 detected	 within	 each	 block	
(Figure	3).	 For	 blocks	 where	 there	 was	 a	 reduction	 in	 effort,	 there	
was	typically	a	corollary	reduction	in	the	number	of	species	observed;	
while,	conversely,	the	number	of	species	detected	usually	 increased	
in	blocks	where	effort	increased	between	atlas	periods.	However,	the	

relationship	between	changes	in	effort	and	changes	in	observed	spe-
cies	richness	was	not	linear,	but	shows	saturation	such	that	increases	
in	effort	of	more	than	40	hr	do	not	continue	to	accrue	these	effort	
effects.

Underlying	the	relationship	between	changes	in	effort	and	number	
of	 species	 detected	 is	 the	 fact	 that	 the	 probability	 of	 detection	 for	
each	species	is	a	function	of	hours	of	effort	expended	in	each	block.	
Models	that	corrected	PBBA	II	data	for	effort	show	that	increased	ef-
fort	hours	would	significantly	increase	block	detections	for	all	species	
tested	 (Figure	4).	None	of	 the	models	 reached	an	 asymptote	within	
50	hr	of	survey	effort,	and	there	were	notable	differences	among	spe-
cies.	For	Ovenbird,	the	predicted	number	of	occupied	blocks	increased	
slowly	with	increased	survey	effort,	suggesting	that	this	species	was	
likely	to	be	detected—where	present—even	with	a	limited	amount	of	
observer	effort.	In	contrast,	the	predicted	number	of	occupied	blocks	
for	Ruffed	Grouse	markedly	increased	with	increasing	effort	up	to,	and	
beyond,	50	hr.	This	suggests	that	Ruffed	Grouse	were	likely	substan-
tially	underreported	in	PBBA	II,	given	that	mean	block	effort	was	21	hr.	
Models	for	the	four	other	study	species	revealed	relationships	that	fell	
somewhere	between	 the	 extremes	 exhibited	by	Ruffed	Grouse	 and	
Ovenbird.

Spatial	autocorrelation	in	PBBA	II	block	occupancy	data	was	highly	
significant	 (Z-	test,	 p-	value	<	.001)	 for	 all	 six	 study	 species	 (Global	
Moran’s	I,	mean	=	0.33;	Table	1).	Spatial	autocorrelation	of	landscape	
covariates	between	atlas	blocks	was	also	highly	significant	(Z-	test,	p-	
value	<	.0001;	Table	2),	with	Moran’s	 I	averaging	0.68	across	 the	26	
covariates	tested.	Across	study	species,	CAR	models	were	consistently	
better	 (higher	AUC	and	CORR)	than	nonspatial	models	at	predicting	
the	probability	of	detection	in	validation	(test)	blocks	(compare	models	
4a	through	4c	with	4d,	Table	3).	However,	CAR	models	that	included	

Recorded change in block occupancy

= log

(

recorded block occupancy PBBA II

recorded block occupancy PBBA I

)

Predicted change in block occupancy

= log

(

predicted block occupancy PBBA II

predicted block occupancy PBBA I

)

F IGURE  3 Relationship	between	change	in	effort	hours	and	mean	
change	in	number	of	species	detected	per	block,	between	PBBA	I	and	
PBBA	II.	Trend	line	fitted	is	a	third-	order	polynomial	(R2	=	0.8).	Bars	
show	the	frequency	of	changes	in	effort	hours	(changes	>60	hr	not	
shown,	for	clarity)
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effort	effects	but	did	not	include	landscape	covariates	(i.e.,	model	4c)	
were	either	as	good	as,	or	better,	than	the	“Full”	model	(i.e.,	model	4a)	
across	all	six	species.

CAR	models	with	landscape	and	effort	effects	proved	to	be	good	
at	predicting	block	occupancy	 (i.e.,	 high	AUC	and	CORR)	 for	 all	 six	
test	species.	Point	Biserial	Correlation	coefficients	between	observed	
data	and	predicted	probabilities	(training	data)	were	highest	for	all	six	
species	when	75%	of	block	data	was	used	(Figure	5;	Table	3).	Models	
based	on	75%	of	block	data	resulted	in	the	highest	AUCs:	between	
0.898	 (American	 Kestrel)	 and	 0.973	 (Carolina	 Wren).	 The	 poorest	
performing	model	(American	Kestrel,	priority	blocks)	had	an	AUC	of	
0.814,	still	suggesting	a	“good”	model.	Maps	of	predicted	block	oc-
cupancy	 showed	 that	 all	models,	 even	 those	 based	 on	 only	 16.5%	
and	 25%	 of	 block	 data,	 represented	 (qualitatively)	 very	 reasonable	
approximations	of	recorded	distributions	(see	Figures	6	and	S1.1	thru	
S1.5).

Without	correcting	for	effort,	the	mean	relative	(recorded)	change	
in	block	occupancy	between	the	PBBA	I	and	PBBA	II	among	151	bird	
species	was	+6.2%	(SE	=	1.55),	whereas	when	the	overall	increase	in	
effort	was	accounted	for	(using	model	1c),	the	mean	relative	predicted	
change	was	+3.5%	(SE	=	1.57).	Moreover,	by	correcting	for	effort,	the	
predicted	change	in	block	occupancy	was	reduced	for	127	of	151	spe-
cies	 (either	 increases	were	 predicted	 to	 be	 lower	 than	 recorded,	 or	
decreases	were	predicted	to	be	greater).	Without	correcting	for	effort,	
109	of	151	species	showed	an	increase	in	block	occupancy,	whereas	
when	correcting	for	effort,	only	84	of	151	species	showed	an	increase.

Maps	 of	 predicted	 probability	 of	 occupancy	 for	 the	WVBBA	 II	
demonstrated	that	the	methods	developed	for	Pennsylvania	were	es-
pecially	effective	in	producing	more	complete	estimates	of	species	dis-
tributions	for	the	relatively	data	sparse	WVBBA	II	(e.g.,	Figure	7).	For	
example,	although	the	Carolina	Wren	was	documented	in	just	38.9%	

F IGURE  4 Effects	of	increasing	modeled	effort	hours	on	the	
predicted	number	of	blocks	occupied	for	six	study	species.	Dashed	
lines	represent	the	actual	number	of	block	detection	for	each	species
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of	atlas	blocks	 in	 the	WVBBA	 II,	 it	was	detected	 in	91%	of	priority	
blocks,	and	when	modeled,	had	a	predicted	block	occupancy	of	90.4	
(95%	credible	 interval	88.7–92.1%).	Across	all	136	WVBBA	 II	 study	
species,	recorded	occupancy	rates	in	priority	blocks	were	on	average	
4.6	times	higher	than	in	nonpriority	blocks	(Figure	8).	Further,	the	rela-
tionship	between	priority	and	all	block	(both	priority	and	nonpriority)	
detection	 rates	was	 not	 linear,	with	 under-	detection	 especially	 pro-
nounced	 in	moderately	widespread	 species	 (those	 found	 in	 approx.	
25%–75%	of	priority	blocks),	as	opposed	to	localized	and	ubiquitous	
species	 (Figure	8).	Our	models	produced	predicted	block	occupancy	
rates	that	were	very	close	to	those	from	priority	blocks	for	all	species,	
with	the	relationship	between	actual	and	predicted	very	close	to	the	
identity	line	(Figure	8).

A	map	 of	 predicted	 change	 in	 block	 occupancy	 of	 the	 Carolina	
Wren	 in	PA	between	the	PABBA	I	and	PABBA	II	 (Figure	9)	suggests	
that	most	of	the	isolated	instances	of	apparent	loss	of	block	occupancy	
were	likely	the	result	of	decreased	observer	effort	in	some	blocks.	The	
predicted	probability	of	changes	in	block	occupancy	provides	a	clearer	
map	of	 likely	 range	expansion	of	 this	 species	 than	 the	 recorded	oc-
cupancy,	even	though	close	to	100%	block	coverage	was	achieved	in	
both	PABBAI	and	PABBA	II.

4  | DISCUSSION

Our	results	suggest	that	CAR	models	incorporating	coarse	landscape	
and	 effort	 effects	 are	 successful	 at	 predicting	 species’	 occupancy	
probabilities	 in	 bird	 atlas	 blocks	 with	 little	 to	 no	 observer	 effort.	
Further,	 as	 the	 landscape	covariates	added	 rather	 little	 (if	 any)	pre-
dictive	power	for	our	test	species,	models	incorporating	only	spatial	
and	 effort	 effects	 may	 provide	 adequate	 models	 that	 circumvent	
a	 considerable	 amount	 of	 GIS-	based	 analysis	 required	 to	 extract	

landscape	 covariates,	 and	 the	 subsequent	model	 selection	 required	
to	identify	the	best	predictors.	However,	because	our	model	testing	
was	 limited	 to	only	six	 species	 in	a	 relatively	homogenous	state	 (all	
of	Pennsylvania	is	within	the	Temperate	and	Broadleaf	Mixed	Forest	
Biome;	Olsen	et	al.,	2001),	we	caution	against	assuming	that	our	find-
ings	would	apply	to	all	species	and	regions.	The	reason	that	our	CAR	
models	had	high	predictive	power,	even	when	 landscape	covariates	
were	not	included,	was	likely	due	to	the	fact	that	landscape	covariates	
were	 highly	 spatially	 autocorrelated	 between	 adjacent	 atlas	 blocks;	
hence,	the	spatial	component	of	the	model	accounted	for	large-	scale	
patterns	in	land	cover.

The	model	testing	based	on	various	percentages	of	training	data	
suggests	that	our	CAR	models	would	be	applicable	to	bird	atlas	proj-
ects	with	 incomplete	coverage.	Even	 for	very	sparse	data	 (e.g.,	25%	
training	 data	 for	 Henslow’s	 Sparrow,	 see	 Fig.	 S1.5),	 our	 predicted	
probability	 of	 occupancy	 map	 provided	 a	 good	 approximation	 of	
actual	 species’	 distributions.	The	main	 failing	 of	 our	models	was	 an	
under-	prediction	of	 isolated	block	occurrences	 that	were	outside	of	
the	species’	core	range	within	the	state	(e.g.,	Fig.	S1.5).	However,	it	is	
likely	that	for	many	species,	isolated	block	occurrences	away	from	the	
species’	core	ranges	represented	small	and	temporally	erratic	popula-
tions.	Hence,	if	bird	atlas	data	are	to	be	utilized	for	conservation	plan-
ning,	correctly	demarcating	core	species’	ranges	is	critical	(Rondinini,	
Wilson,	Boitani,	Grantham,	&	Possingham,	2006).

By	 correcting	 for	 survey	 effort,	 the	 number	 of	 species	 assessed	
that	expanded	their	range	(block	occupancy)	rather	than	show	a	range	
contraction	between	PBBA	I	and	PBBA	II	changed	sufficiently	to	put	
an	entirely	different	complexion	on	atlas	findings.	Recorded	data	sug-
gested	that	species	showing	increased	block	occupancy	outnumbered	
those	showing	decreased	block	occupancy	by	more	than	two	to	one	
(2.59:1),	but	after	correcting	for	effort,	the	ratio	was	much	closer	to	
parity	(1.25:1).	The	potential	effects	of	not	correcting	for	survey	effort	
to	evaluate	range	shifts	have	been	documented	by	others	(Kujala	et	al.,	
2013).	Our	analysis	supports	the	need	for	SDMs	that	incorporate	vari-
ation	in	observer	effort	(MacKenzie	et	al.,	2006)	to	correctly	measure	
range	shifts.

While	our	methods	show	that	spatial	models	can	account	for	vari-
ation	 in	 observer	 effort,	 there	 are	 some	 limitations	 to	 our	 analysis.	
While	 the	 number	of	 effort	 hours	 is	 correlated	with	 the	 number	of	
species	detected	in	an	atlas	block,	there	are	several	other	factors	that	
could	influence	the	probability	that	any	given	species	is	detected,	in-
cluding	the	efficiency	and	level	of	prior	experience	of	observers,	the	
number	of	 individual	visits	within	and	between	years,	the	diel	distri-
bution	of	survey	effort,	and	the	spatial	distribution	of	effort	within	a	
given	block.	Observer	effort	may	also	be	influenced	by	habitat	diver-
sity,	with	more	effort	required	to	survey	blocks	with	diverse	habitats.

Another	 potential	 limitation	 to	 our	 spatial	 models	 is	 the	 likely	
presence	of	anisotropy—that	is,	directional	dependent	spatial	relation-
ships.	 The	Valley	 and	 Ridge	 Physiographic	 Province	 of	 south-	central	
Pennsylvania	and	much	of	West	Virginia	has	a	pronounced	southwest	to	
northeast	topography,	a	result	of	the	weathering	of	belts	of	rocks	from	
repeated	by	 folding	 and	 faulting	 (Fenneman,	1938).	This	 topography	
has	a	direct	impact	on	land	use,	with	farmland	and	human	development	

F IGURE  5 Comparison	of	predictive	performance	on	test	data,	
as	measured	by	the	Point	Biserial	Correlation	coefficient	(CORR)	of	
models	for	six	species	based	on	2nd	Pennsylvania	Breeding	Bird	Atlas	
data	(2004–2009)
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dominating	the	valleys,	and	forests	on	the	ridges,	and	hence	valleys	and	
ridges	have	markedly	different	habitats	(Wilson	et	al.,	2012).

Although	we	 included	some	model	 selection	 in	our	analysis,	 the	
multitude	 of	 candidate	 models	 that	 can	 be	 developed	 from	 just	 a	

handful	of	environmental	covariates	can	be	daunting,	especially	when	
dealing	with	 data	 from	 atlas	 projects	 that	 include	 tens	 to	 hundreds	
of	species.	Other	studies	have	found	that	broad	land	use	types,	ele-
vation,	 and	 (for	 large	extents)	 latitude	 and	 longitude	explain	 a	 large	

F IGURE  6 Training	data	(left)	and	predicted	probabilities	of	block	occupancy	for	the	Carolina	Wren	in	the	2nd	Pennsylvania	Breeding	Bird	
Atlas.	Results	of	models	1	through	4,	top	to	bottom	(see	text)

Recorded occupancy, all blocks

Recorded occupancy, random 75% of blocks

Recorded occupancy, random 50% of blocks

Recorded occupancy, random 25% of blocks

Predicted occupancy, based on all blocks

Predicted occupancy, based on random 75% of blocks

Predicted occupancy, based on random 50% of blocks

Predicted occupancy, based on random 25% of blocks
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proportion	of	the	variance	in	species’	distributions	(Storch,	Konvicka,	
Benes,	Martinkova,	&	Gaston,	2003).	However,	our	finding	that	simple	
spatial	models—even	 those	without	 landscape	 level	 covariates—per-
form	well	when	making	predictions	based	solely	on	atlas	data	empha-
sizes	the	importance	of	incorporating	spatial	autocorrelation	into	the	
analysis	of	atlas	data.

While	there	are	many	methods	available	to	predict	species	dis-
tributions,	 including	sophisticated	methods	to	account	for	 imper-
fect	detection	 (e.g.,	 Sadoti,	Zuckerberg,	Jarzyna,	&	Porter,	2013),	
bird	atlas	projects	are	often	constrained	by	limited	analytical	capa-
bilities	 (i.e.,	 restricted	funds	to	employ	data	analysts),	and	a	tight	
deadline	 to	 complete	 analysis	 for	 (potentially)	 100s	 of	 species.	

F IGURE  7 Recorded	and	predicted	probability	of	block	occupancy	for	the	Carolina	Wren	in	the	West	Virginia	Breeding	Bird	Atlas	II

Recorded occupancy
Detected
Not detected, but >1 hr observer effort

Predicted probability of occupancy
<0.25 0.25 – 0.50 0.05 – 0.75 0.75 – 1.0

F IGURE  8 Relationships	between	block	detections	in	priority	blocks	and	all	blocks	in	the	WVBBA	II,	showing	actual	data	(left),	and	modeled	
data	(right),	for	136	species	found	in	20	or	more	atlas	blocks.	Solid	black	line	is	the	identity	line
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In	 light	of	 those	constraints,	 the	 relatively	simple	models	used	 in	
this	study	offer	a	practical	alternative.	Our	models	 for	WVBBA	II	
data	 typically	 converged	 in	 less	 than	10	min	on	a	 standard	desk-
top	computer	 (Intel	Core	 i7	processor	with	3.6	GHz	CPU	and	16	
GB	 RAM).	 The	 rapidity	with	which	 these	models	 can	 be	 applied	
would	allow	for	the	testing	of	several	competing	models,	for	each	
species	 (hence	100s	or	1000s	of	models	 total)	within	a	 relatively	
short	time-	frame.

There	has	been	much	discussion	about	the	relative	merits	of	ac-
counting	 for	 imperfect	detection	using	occupancy-	detection	models	
(Guillera-	Arroita,	 2017).	 Some	 studies	 have	 shown	 that	 occupancy-	
detection	 models	 perform	 better	 for	 species	 that	 are	 difficult	 to	
detect,	 but	 that	gains	are,	 at	best,	modest	 for	more	easily	detected	
species	 (Comte	&	Grenouillet,	2013;	Rota,	Fletcher,	Evans,	&	Hutto,	

2010).	Hence,	for	analysis	of	atlas	data	where	the	main	aim	is	to	ex-
trapolate	species	distributions	from	incomplete	surveys	(e.g.,	WVBBA	
II),	our	approach	may	be	sufficient	for	readily	detected	species.	For	less	
readily	detected	species,	a	more	sophisticated	approach	may	be	nec-
essary,	but	in	those	cases,	sample	sizes	(number	of	block	detections)	
may	be	prohibitively	small,	anyway.

4.1 | Recommendations

Our	 results	 suggest	 that	 bird	 atlas	 data	 with	 incomplete	 block	
coverage,	or	uneven	effort,	can	still	provide	valuable	data	on	spe-
cies’	 distributions	 and	distribution	 change.	Relatively	 simple	CAR	
models	provide	a	usefully	modeling	framework	with	which	to	ac-
count	for	missing	data	and	biases	in	survey	effort.	To	apply	SDM	

F IGURE  9 Recorded	(left)	and	predicted	(right)	distribution	of	the	Carolina	Wren	in	the	PABBA	I	(top)	and	PABBA	II	(middle),	and	change	
between	atlas	periods	(bottom).	Results	from	model	1	(using	all	available	data,	see	text)

Recorded Predicted probability

1983–89

2004–09

Change

1983–89

2004–09

Change

<0.2 0.3 – 0.4 0.5 – 0.6 0.7 – 0.8 >0.8

<0.2 0.3 – 0.4 0.5 – 0.6 0.7 – 0.8 >0.8

>0.25 loss
No change

0.26–0.50 gain
0.51–1.00 gain1983–89 only Both 2004–09 only
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approaches	that	account	for	spatial	variation	in	survey	effort,	it	is	
critical	 that	 effort	 is	 comprehensively	 and	 accurately	 quantified.	
Volunteer/surveyor	effort	hours	is	now	documented	by	most	bird	
atlas	 projects,	 but	 other	 ways	 of	 measuring	 effort,	 such	 as	 dis-
tance	travelled	through	the	sampling	unit	(Robertson	et	al.,	2010),	
or	species	accumulation	lists	(Moreno	&	Halffter,	2000).	With	the	
increasing	use	of	online	data	capture	for	atlas	projects	(Robertson	
et	al.,	 2010),	 the	 requirement	 to	 include	a	measure	of	 survey	ef-
fort	with	each	data	submission	is	a	simple	addition	to	online	data	
capture	forms.

Our	 analysis	 of	 the	 PABBA	 II	 and	 WVBBA	 II	 data	 revealed	
that	 total	 effort	 hours	may	 not	 be	 sufficient	 for	 producing	 effort-	
corrected	SDMs	for	species	 that	are	active	at	specific	 times	of	 the	
days,	most	notably	nocturnal	species.	While	the	time	of	day	of	ob-
servations	was	required,	along	with	overall	effort	hours	in	the	online	
data	submission	portal	for	PABBA	II,	we	suspect	that	nocturnal	effort	
hours	were	under-	reported	(Wilson	et	al.,	2012).	We	therefore	sug-
gest	that	the	importance	of	parsing	daytime	and	nocturnal	hours	is	
emphasized	in	the	future	atlas	efforts,	through	communication	with	
surveyors	and	through	careful	development	of	recording	forms/on-
line	 portals	 to	 document	 effort	 hours	 accordingly.	This	would	 also	
allow	for	the	application	of	occupancy-	detection	models,	which	may	
be	especially	useful	for	scarce	or	difficult	to	detect	species	(Guillera-	
Arroita,	2017).

It	 is	not	possible	 to	state	a	broadly	applicable	minimum	require-
ment	 for	 survey	 effort	 and	 block	 coverage	 from	 our	 analysis.	 The	
minimum	requirement	would	depend	to	some	extent	of	habitat	het-
erogeneity,	species	richness,	and	species’	densities.	However,	the	CAR	
models	that	we	have	employed	work	best	when	unsurveyed	blocks	are	
adjacent	to	blocks	with	data—hence,	large	tracts	of	unsurveyed	blocks	
should	be	avoided.	We	suggest	that	our	methods	be	applied	to	differ-
ent	regions,	and	atlases	with	a	variety	of	grid	sizes	and	coverage,	to	
assess	their	general	applicability.	Finally,	we	encourage	data	analysts	
to	report	the	CPU	time	required	to	run	SDMs	as	a	matter	of	course,	
thereby	enabling	managers	of	bird	 atlases	 to	 adequately	budget	 for	
data	analysis	following	data	collection.
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