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Abstract
To assess the importance of variation in observer effort between and within bird atlas 
projects and demonstrate the use of relatively simple conditional autoregressive (CAR) 
models for analyzing grid-based atlas data with varying effort. Pennsylvania and West 
Virginia, United States of America. We used varying proportions of randomly selected 
training data to assess whether variations in observer effort can be accounted for 
using CAR models and whether such models would still be useful for atlases with in-
complete data. We then evaluated whether the application of these models influenced 
our assessment of distribution change between two atlas projects separated by twenty 
years (Pennsylvania), and tested our modeling methodology on a state bird atlas with 
incomplete coverage (West Virginia). Conditional Autoregressive models which in-
cluded observer effort and landscape covariates were able to make robust predictions 
of species distributions in cases of sparse data coverage. Further, we found that CAR 
models without landscape covariates performed favorably. These models also account 
for variation in observer effort between atlas projects and can have a profound effect 
on the overall assessment of distribution change. Accounting for variation in observer 
effort in atlas projects is critically important. CAR models provide a useful modeling 
framework for accounting for variation in observer effort in bird atlas data because 
they are relatively simple to apply, and quick to run.
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1  | INTRODUCTION

1.1 | Use of atlases

Grid-based biological atlases, especially of birds, have become in-
creasingly popular ways of documenting species’ status and distri-
butions since the first large-scale efforts were initiated in the 1960s 
(Gibbons, Donald, Bauer, Fornasari, & Dawson, 2007). Expanding net-
works of amateur surveyors have enabled the completion of bird atlas 

projects covering geographic scales ranging from counties, through 
states, countries, and even continents (e.g., Hagemeijer & Blair, 1997). 
Increasingly, bird and other biological atlas data are being utilized to 
investigate large-scale environmental issues, notably pertaining to cli-
mate change (e.g., Gillings, Balmer, & Fuller, 2015; Huntley, Altwegg, 
Barnard, Collingham, & Hole, 2012; Matthews, Iverson, Prasad, & 
Peters, 2011; Thomas & Lennon, 1999; Zuckerberg, Woods, & Porter, 
2009) and species conservation (e.g., Araújo, Thuiller, Williams, & 
Reginster, 2005; Boakes et al., 2010; van der Hoek et al., 2015). Atlas 

www.ecolevol.org
http://orcid.org/0000-0001-8435-4516
http://creativecommons.org/licenses/by/4.0/
mailto:awilson@gettysburg.edu


2  |     WILSON et al.

data are especially useful for developing climate envelope models, 
which can predict future distributions under climate change scenarios, 
thereby informing large-scale and long-term conservations plans (e.g., 
Beale, Baker, Brewer, & Lennon, 2013; Coetzee, Robertson, Erasmus, 
Van Rensburg, & Thuiller, 2009; Virkkala & Lehikoinen, 2014).

1.2 | Variation in effort and false negatives

Because most bird atlas projects rely on citizen scientists to complete 
the majority of the field surveys, field methods are designed to promote 
mass participation with the aim of achieving comprehensive spatial cov-
erage (Greenwood, 2007). Inevitably, this leads to trade-offs between 
data quality and coverage (Robertson, Cumming, & Erasmus, 2010; 
Szabo, Butchart, Possingham, & Garnett, 2012), such as the adoption 
of somewhat flexible field protocols which often do not impose stand-
ardization of survey effort. This lack of structure results in spatial varia-
tion in observer effort, with the highest effort often expended in areas 
with habitats or bird communities of most interest to amateur survey-
ors (e.g., Szabo, Davy, Hooper, & Astheimer, 2007; Tulloch, Mustin, 
Possingham, Szabo, & Wilson, 2013). Further, accessibility may con-
strain spatial coverage, such that areas at a greater distance from cent-
ers of human populations often receive the lowest effort, especially if 
there is a lack of accessible roads or paths (McCarthy, Fletcher, Rota, 
& Hutto, 2012; Syfert, Smith, & Coomes, 2013). Hence, spatial bias 
can result in significant taxonomic bias, that is, under-representation of 
certain species or species groups (Robertson et al., 2010).

When repeat atlases projects are used to assess shifts in species’ 
distributions, changes in survey effort can result in biased measures 
of changes in range margins (Kujala, Vepsäläinen, Zuckerberg, & 
Brommer, 2013). It is especially important, therefore, that estimates 
of changes in distribution between atlas periods include an assess-
ment of changes in survey effort. Many published bird atlases have 
not accounted for variation in survey effort when producing esti-
mated changes in range size, and indeed, not all bird atlases have 
adequately collected data to measure survey effort. The application 
of species distributions models (SDM) is one way of accounting for 
biases due to variable survey effort. Species distribution models are 
algorithms that “identify a mathematical or logical function linking 
species’ occurrences and a set of predictors” (Kamino et al., 2012). 
A multitude of different SDMs have been developed and applied 
to ecological data (e.g., Aizpurua, Paquet, Brotons, & Titeux, 2015; 
Comte & Grenouillet, 2013; Elith, Kearney, & Phillips, 2010; Rocchini 
et al., 2011), but accounting for false negatives is a persistent chal-
lenge (Chefaoui & Lobo, 2008; Kéry, 2011; Rocchini et al., 2011). A 
failure to detect a species in a given area could be because the habitat 
is not suitable, or it could merely be due to insufficient survey effort 
or inappropriate survey protocols. Developing survey protocols to 
maximize the likelihood of detection across multiple species is chal-
lenging, and the probability of detecting all species—given their pres-
ence—is almost always less than one (Kéry, 2011). Occupancy models 
(MacKenzie et al., 2006) are increasingly used to account for nonper-
fect detection in biological atlas data (e.g., Broms, Johnson, Altwegg, 
& Conquest, 2014). These models are based on capture–recapture 

theory and hence rely on repeated site visits to model both species 
occurrence and detectability (MacKenzie et al., 2006). Unfortunately, 
data captured by bird atlas projects are often highly unstructured 
and may include opportunistic data, and highly variable sequences of 
survey effort between blocks, and over multiple years (e.g., Wilson, 
Brauning, & Mulvihill, 2012). Further, data capture during first gen-
eration atlases was often not sophisticated enough to retain a per-
manent record of the visit history, or even visit years, to each block. 
Hence, application of occupancy models is not always feasible, and 
such models can be computationally challenging (Broms et al., 2014; 
Kéry, Gardner, & Monnerat, 2010), which is a major hurdle if practi-
tioners with limited resources are to apply them to large numbers of 
species.

1.3 | Aims

In this study, we use data from the Atlas of Breeding Birds in 
Pennsylvania, henceforth the “PBBA I” (Brauning, 1992; field-
work 1983–1989), and the Second Atlas of Breeding Birds in 
Pennsylvania, henceforth the “PBBA II” (Wilson et al., 2012; field-
work 2004–2009), to explore the use of a SDM approach to account 
for variation in observer effort, both within and between repeated 
atlas projects. We apply the methods to data from the West Virginia 
Breeding Bird Atlas II project, henceforth WVBBA II (unpublished; 
fieldwork 2009–2014), to demonstrate that relatively simple con-
ditional autoregressive (CAR) models offer a useful framework for 
modeling species distributions using atlas data, by incorporating 
information on broad-scale landscape features and observer effort. 
Throughout this study, we use the term “occupancy probability” as 
shorthand for “occupancy and detection probability.” Our models 
predict species occurrences based on hypothetical but realistic lev-
els of survey effort per block and hence we do not explicitly model 
detection probabilities.

Specifically, we test the following hypotheses:

1.	 Spatial (CAR) models are effective at predicting species’ occu-
pancy probabilities for bird atlases with incomplete data

2.	 Spatial (CAR) models are superior to nonspatial models at predict-
ing species’ occupancy probabilities

3.	 Accounting for variation in observer effort improves model fit

2  | METHODS

2.1 | Data

The PBBA I established a survey grid based on U.S. Geological Survey 
(USGS) 7.5-min topographic quadrangle maps; dividing each USGS 
quadrangle into six atlas “blocks,” the bottom-right of which being 
designated as a “priority” block. This resulted in 4,937 atlas blocks, 
including 787 priority blocks, of 3.75’ longitude and 2.5’ latitude (ap-
proximately 5.2 × 4.62 km) across the state of Pennsylvania (Brauning, 
1992). Priority blocks were targeted for more thorough coverage than 
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other blocks. Fieldwork was completed by approximately 2,000 volun-
teers in the years 1983–1989. The PBBA II (2004-2009) was a repeat 
effort with very minor changes to field survey protocols. Although the 
median change in block effort between atlas projects was an increase 
of 5 hr (mean = 8.68, SD = 33.67), there was not a uniform increase in 
effort across all blocks. Not only were the changes in effort not evenly 
distributed across the state (Wilson et al., 2012), but effort was lower 

than PBBA I in 37% of blocks. It should be noted that details of survey 
effort in each block (times and duration of individual visits) in PBBA 
I are longer available, but the database does have a record of total 
effort hours.

Blocks for the WVBBA II (2009–2014), developed for the WVBBA I 
(1984–1989; Buckelew & Hall, 1994), were delineated in the same 
way as the PBBA blocks. This resulted in 2,653 atlas blocks across 
the state of West Virginia, 469 of which were designated as priority 
blocks. Due to a lower population density, and consequently smaller 
volunteer pool, block coverage—in 2009–2014—for the WVBBA II was 
incomplete in comparison with the PBBA II. No bird records were sub-
mitted for 580 atlas blocks (21.9%), and observer effort exceeded 1 hr 
in less than half of blocks (48.2%). However, coverage of the 469 pri-
ority blocks in WVBBA II was comprehensive, with a mean of 19.6 hr 
(SE = 0.65) of survey effort expended per block. Like the Pennsylvania 
atlas, spatial distributions of observer effort in the WVBBA II were not 
uniform, consisting of fairly comprehensive coverage in the Allegheny 
Mountains and lower elevation “panhandle” (eastern half of the state), 
but very patchy coverage across much of the Allegheny Plateau (west-
ern half of the state; Figure 2).

2.2 | Study species

We tested our hypotheses on Pennsylvania atlas data for six species: 
Ruffed Grouse (Bonasa umbellus), American Kestrel (Falco sparverius), 
Carolina Wren (Thryothorus ludovicianus) (Figure 1), Ovenbird (Seiurus 

F IGURE  1 Carolina Wren Thryothorus ludovicianus (photo credit: 
A. Wilson)

F IGURE  2 Survey effort in the West 
Virginia Breeding Bird Atlas II (2009–2014)

Survey effort (hr)
Priority blocks

0
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aurocapillus), Cerulean Warbler (Dendroica cerulea), and Henlow’s 
Sparrow (Ammodramus henslowii). These species were chosen be-
cause they provided a representative sample across abundance and 
habitat gradients. Among these, six species (Table 1) are localized spe-
cies (Henslow’s Sparrow, found in 4.6% of blocks), species with state-
wide distributions (Ovenbird, American Kestrel) and range restricted 

species (Carolina Wren, absent from most of the northern one-third 
of the state); forest obligates (Ruffed Grouse, Ovenbird, Cerulean 
Warbler), a grassland obligate (Henslow’s Sparrow), a generalist 
(Carolina Wren); increasing species (Ovenbird, Carolina Wren) and de-
clining species (Ruffed Grouse, American Kestrel, Cerulean Warbler, 
Henslow’s Sparrow).

Block detections (% of all)
Global Moran’s 
I (PBBA II)PBBA I PBBA II

Ruffed Grouse 2,782 (56.4) 1,870 (37.9) 0.316

American Kestrel 2,938 (60.0) 2,558 (51.8) 0.260

Carolina Wren 2,070 (42.0) 3,487 (70.6) 0.472

Ovenbird 3,674 (74.5) 4,168 (84.4) 0.425

Cerulean Warbler 836 (17.0) 776 (15.7) 0.251

Henslow’s Sparrow 364 (7.4) 229 (4.6) 0.246

TABLE  1 Recorded block detection of 
the six study species, in both Pennsylvania 
Atlas periods, and the spatial 
autocorrelation in block detections (Global 
Moran’s I)

Covariate Subtype
Mean value 
(SE)

Global 
Moran’s I z-score Data source

% Forest All 62.47 (0.37) 0.77 53.47 a

Deciduous 50.87 (0.39) 0.846 58.82 a

Mixed 11.08 (0.21) 0.82 57.09 a

Conifer 0.51 (0.027) 0.66 46.36 a

Core 34.97 (0.35) 0.752 52.4 a

Edge 27.51 (0.14) 0.648 45.06 a

Young forest 0.18 (0.006) 0.548 38.71 a

% Water 1.77 (0.087) 0.304 21.4 a

% Wetland All 1.29 (0.041) 0.893 62.13 a

Emergent 1.07 (0.037) 0.892 62.07 a

Woody 0.22 (0.009) 0.893 62.1 a

% Farmland All 23.52 (0.29) 0.716 49.77 a

Grassland 13.66 (0.16) 0.664 46.16 a

Row crop 9.72 (0.17) 0.736 51.21 a

% Developed All 10.9 (0.21) 0.757 52.73 a

Open (e.g., lawn) 6.03 (0.069) 0.689 47.97 a

Low density 3.04 (0.084) 0.724 50.39 a

Medium density 1.24 (0.051) 0.665 46.44 a

High density 0.6 (0.044) 0.673 47.91 a

Medium + high 1.84 (0.088) 0.695 48.63 a

% Reclaimed strip mines 0.37 (0.021) 0.514 38.74 a,b

Stream density (m/km2) 1,072 (4.97) 0.490 34.11 c

River density (m/km2) 88.1 (5.92) 0.131 11.34 c

Forested stream density (m/km2) 728.8 (4.76) 0.642 44.66 a,c

Mean elevation (m) 377.5 (2.19) 0.923 64.19 d

Elevation range (m) 165.5 (1.37) 0.637 44.34 d

aNational Land Cover Data 2006 (Fry et al., 2011).
bAbandoned Mine Land Inventory (PA DEP 2009).
cNetworked Streams of Pennsylvania (ERRI 1998).
dNational Elevation Dataset, USGS.

TABLE  2 Spatial autocorrelation of 
landscape covariates among atlas blocks 
(Global Moran’s I). p < .0001 for all z-tests
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We used the models developed for the PBBA II to produce pre-
dicted probabilities of block occupancy for 136 species (i.e., those that 
were found in at least 20 blocks) in WVBBA II.

2.3 | Data analysis

The predicted probability of occurrence by block was modeled using 
Hierarchical Logistic Regression in WinBUGS for each species (Lunn, 
Thomas, Best, & Spiegelhalter, 2000). The model took the form: 

where pi is the predicted probability of occurrence in block i, α is the 
intercept, βk is the parameter estimate for s landscape covariates χ, γi is 
a correction factor to account for observer effort (i.e., deviation from 
a specified “standard”), δi is the spatial effect, and ε is random error.

Landscape covariates were selected by modeling recorded pres-
ence/absence using a stepwise (by AIC) logistic model in program R 
(package MASS; Venables & Ripley, 2002). Between 8 and 12 can-
didate models were tested for each species. Candidate models were 
selected based on expert opinion and exploratory analysis of habitat 
associations (Wilson et al., 2012). There were 26 candidate landscape 
covariates (Table 2). Land cover data were from Landsat ETM+ de-
rived data (c. 2005; Fry et al., 2011). The extent of reclaimed surface 
mine grassland was estimated by intersecting areas identified in the 
Abandoned Mine Inventory data for 2009 (PA DEP, 2009) with grass-
land and herbaceous land cover types.

Effort effects were modeled after Link and Sauer (2007), using the 
formula: 

where B is the standardized number of hours (e.g., mean or median), 
and C and D are estimated parameters that determine the shape of 
the relationship between hours and probability of detection. This for-
mulation enables estimation of effort effects that range from linear 
(C = 0, D = 1), to diminishing returns (C = 0, 0 < D < 1), and diminishing 
returns with an asymptote (C < 0, D > 0). This function provides a mul-
tiplier; such that if B = 30, the multiplier would be >1 for blocks that 
receive <30 hr of survey effort—increasing the predicted probability 
of occurrence in blocks with low effort. In the above example, the 
multiplier would equal 1 for survey effort of 30 hr.

Spatial effects were included using a Gaussian CAR model, which 
accounts for spatial autocorrelation in lattice data, such as gridded 
atlas blocks. Spatially explicit models are “expected to yield better 
predictions” (Bahn et al., 2006) than nonspatial models. In ecological 
terms, such models incorporate important spatial information that 
may relate to unknown effects of bird population dynamics and un-
derlying environmental variation. Spatial autocorrelation was assessed 
using global Moran’s I test statistic using ESRI’s Spatial Statistics Tool. 
A Moran’s I value close to zero indicates spatial randomness while 
a positive value (up to 1) indicates positive spatial autocorrelation. 

Statistical significance of Moran’s I was tested using z-tests (Z score is 
based on the Randomization Null Hypothesis computation). The com-
putation of spatial autocorrelation was based on Queen contiguity and 
Euclidean distance (Anselin, 2005).

Models were implemented using Markov chain Monte Carlo 
(MCMC) simulation in WinBUGS. Vague normal prior distributions (0, 
0.0001) were used to begin the MCMC sampling. Models were fit-
ted with 5,000 iterations following a minimum 1,000 sample burn-in. 
Model convergence was checked by examining trace plots for all pa-
rameters (Lunn, Jackson, Best, Thomas, & Spiegelhalter, 2012). Most 
models showed convergence after a few hundred iterations, but mod-
els applied to the sparser WVBBA II species data required up to 6,000 
iterations to reach convergence.

To cross-validate our models and test our hypothesis that spa-
tial models are effective at providing predictions for bird atlases with 
incomplete data, we ran five models for each of the six test species 
(PBBA II data):

1.	 all—using data from 100% of atlas blocks
2.	 25% random—models trained using 25% of blocks, and tested on 
the remaining 75%

3.	 50% random—models trained using 50% of blocks, and tested on 
the remaining 50%

4.	 75% random—models trained using 75% of blocks, and tested on 
the remaining 25%

5.	 Priority blocks—models trained using only priority blocks, which 
comprise 16.5% of all blocks, and tested on the remaining 83.5%

Model accuracy was evaluated for test data using the area under 
the receiver operating characteristic (ROC) curve, commonly denoted as 
area under the curve (AUC). Area under the curve values of 0.5 imply 
that model accuracy is no better than random, while AUCs of 0.8 or more 
are considered good, and values of 0.9 or more are considered excellent 
(Brotons, Herrando, Estrada, Pedrocchi, & Martin, 2008). The AUC for 
test data was calculated in package pROC of program R (Robin et al., 
2011). However, because AUC has received some criticism (e.g., Lobo, 
Jiménez-Valverde, & Real, 2008), we included an additional measure of 
model accuracy: the Point Biserial Correlation coefficient (CORR), which 
is a special case of Pearson’s correlation coefficient that measures the re-
lationship between a continuous and a binary variable, as recommended 
by Kraemer (2006).

We tested our hypothesis that spatial models are superior to non-
spatial models at predicting the presence/absence using four different 
nested models for each species:

4a.	 full (landscape characteristics + spatial effects + effort)
4b.	 landscape characteristics + spatial effects
4c.	 spatial effects + effort
4d.	 landscape characteristics + effort

Models 4a through 4d used the 75% random block data for 
model training (see model 4). Models were compared using Deviance 
Information Criterion (DIC).

logit(pi) = α +

(

S
∑

k=1

βkχik

)

+ γi + δi + ε

f(γi) = exp [D(γi∕B)
c−1]∕C
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Our third hypothesis, that incorporating observer effort effects 
improves model fit, was implicitly tested by comparing models 
4a with 4c, and 4b with 4d. We also investigated the relationship 
between effort and predicted occupancy by running models with 
varying “standard” amounts of effort (B), ranging from 2 hr up to 
50 hr, per block; including models with standard effort of 14 (the 
median block effort in PBBA II) and 21 hr (mean block effort). Effort 
was modeled as a function of two estimated parameters (after Link 
& Sauer, 2007), which allowed for a variety of relationships be-
tween field survey hours expended and the probability of detecting 
a species in each block. Hence, the modeled relationship was not 
necessarily linear; reflecting diminishing returns with increasing 
effort.

Finally, we demonstrated the extent to which changes in effort 
substantially affect bird atlas results, by making predictions using 
a “standard” 40 hr of effort across all blocks in both the PBBA I and 
PBBA II. A priori, we expected that because overall effort was lower in 
PBBA I than PBBA II, the effects of modeling presence/absence under 
a scenario of high effort would increase the number of predicted block 
occupied in the PBBA I more so than for the PBBA II. Our expectation 
was therefore that decreases in the number of occupied blocks be-
tween the atlases would otherwise have been underestimated, while 
increases would be overestimated. The models estimating change in 
the number of occupied blocks included all the data (model 1), and 
spatial and effort parameters, but did not include landscape covari-
ates (e.g., model 4c) henceforth denoted as model 1c. We chose these 
reduced models because land cover data were not available for the 
period of the PBBA I. For further justification of this approach, see the 
comparison of models 4a through 4d in results. We ran this model for 
species found in at least 40 blocks during both atlases: 151 species or 
88% of the 172 species confirmed to have bred in both PBBA I and 
PBBA II.

To assess changes in block occupancy between atlas efforts, we 
used a relative change measures: 

and: 

3  | RESULTS

Data from the two Pennsylvania atlases show that there is a strong 
relationship between changes in observer effort (hours of effort) 
and changes in the number of species detected within each block 
(Figure 3). For blocks where there was a reduction in effort, there 
was typically a corollary reduction in the number of species observed; 
while, conversely, the number of species detected usually increased 
in blocks where effort increased between atlas periods. However, the 

relationship between changes in effort and changes in observed spe-
cies richness was not linear, but shows saturation such that increases 
in effort of more than 40 hr do not continue to accrue these effort 
effects.

Underlying the relationship between changes in effort and number 
of species detected is the fact that the probability of detection for 
each species is a function of hours of effort expended in each block. 
Models that corrected PBBA II data for effort show that increased ef-
fort hours would significantly increase block detections for all species 
tested (Figure 4). None of the models reached an asymptote within 
50 hr of survey effort, and there were notable differences among spe-
cies. For Ovenbird, the predicted number of occupied blocks increased 
slowly with increased survey effort, suggesting that this species was 
likely to be detected—where present—even with a limited amount of 
observer effort. In contrast, the predicted number of occupied blocks 
for Ruffed Grouse markedly increased with increasing effort up to, and 
beyond, 50 hr. This suggests that Ruffed Grouse were likely substan-
tially underreported in PBBA II, given that mean block effort was 21 hr. 
Models for the four other study species revealed relationships that fell 
somewhere between the extremes exhibited by Ruffed Grouse and 
Ovenbird.

Spatial autocorrelation in PBBA II block occupancy data was highly 
significant (Z-test, p-value < .001) for all six study species (Global 
Moran’s I, mean = 0.33; Table 1). Spatial autocorrelation of landscape 
covariates between atlas blocks was also highly significant (Z-test, p-
value < .0001; Table 2), with Moran’s I averaging 0.68 across the 26 
covariates tested. Across study species, CAR models were consistently 
better (higher AUC and CORR) than nonspatial models at predicting 
the probability of detection in validation (test) blocks (compare models 
4a through 4c with 4d, Table 3). However, CAR models that included 

Recorded change in block occupancy

= log

(

recorded block occupancy PBBA II

recorded block occupancy PBBA I

)

Predicted change in block occupancy

= log

(

predicted block occupancy PBBA II

predicted block occupancy PBBA I

)

F IGURE  3 Relationship between change in effort hours and mean 
change in number of species detected per block, between PBBA I and 
PBBA II. Trend line fitted is a third-order polynomial (R2 = 0.8). Bars 
show the frequency of changes in effort hours (changes >60 hr not 
shown, for clarity)
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effort effects but did not include landscape covariates (i.e., model 4c) 
were either as good as, or better, than the “Full” model (i.e., model 4a) 
across all six species.

CAR models with landscape and effort effects proved to be good 
at predicting block occupancy (i.e., high AUC and CORR) for all six 
test species. Point Biserial Correlation coefficients between observed 
data and predicted probabilities (training data) were highest for all six 
species when 75% of block data was used (Figure 5; Table 3). Models 
based on 75% of block data resulted in the highest AUCs: between 
0.898 (American Kestrel) and 0.973 (Carolina Wren). The poorest 
performing model (American Kestrel, priority blocks) had an AUC of 
0.814, still suggesting a “good” model. Maps of predicted block oc-
cupancy showed that all models, even those based on only 16.5% 
and 25% of block data, represented (qualitatively) very reasonable 
approximations of recorded distributions (see Figures 6 and S1.1 thru 
S1.5).

Without correcting for effort, the mean relative (recorded) change 
in block occupancy between the PBBA I and PBBA II among 151 bird 
species was +6.2% (SE = 1.55), whereas when the overall increase in 
effort was accounted for (using model 1c), the mean relative predicted 
change was +3.5% (SE = 1.57). Moreover, by correcting for effort, the 
predicted change in block occupancy was reduced for 127 of 151 spe-
cies (either increases were predicted to be lower than recorded, or 
decreases were predicted to be greater). Without correcting for effort, 
109 of 151 species showed an increase in block occupancy, whereas 
when correcting for effort, only 84 of 151 species showed an increase.

Maps of predicted probability of occupancy for the WVBBA II 
demonstrated that the methods developed for Pennsylvania were es-
pecially effective in producing more complete estimates of species dis-
tributions for the relatively data sparse WVBBA II (e.g., Figure 7). For 
example, although the Carolina Wren was documented in just 38.9% 

F IGURE  4 Effects of increasing modeled effort hours on the 
predicted number of blocks occupied for six study species. Dashed 
lines represent the actual number of block detection for each species
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of atlas blocks in the WVBBA II, it was detected in 91% of priority 
blocks, and when modeled, had a predicted block occupancy of 90.4 
(95% credible interval 88.7–92.1%). Across all 136 WVBBA II study 
species, recorded occupancy rates in priority blocks were on average 
4.6 times higher than in nonpriority blocks (Figure 8). Further, the rela-
tionship between priority and all block (both priority and nonpriority) 
detection rates was not linear, with under-detection especially pro-
nounced in moderately widespread species (those found in approx. 
25%–75% of priority blocks), as opposed to localized and ubiquitous 
species (Figure 8). Our models produced predicted block occupancy 
rates that were very close to those from priority blocks for all species, 
with the relationship between actual and predicted very close to the 
identity line (Figure 8).

A map of predicted change in block occupancy of the Carolina 
Wren in PA between the PABBA I and PABBA II (Figure 9) suggests 
that most of the isolated instances of apparent loss of block occupancy 
were likely the result of decreased observer effort in some blocks. The 
predicted probability of changes in block occupancy provides a clearer 
map of likely range expansion of this species than the recorded oc-
cupancy, even though close to 100% block coverage was achieved in 
both PABBAI and PABBA II.

4  | DISCUSSION

Our results suggest that CAR models incorporating coarse landscape 
and effort effects are successful at predicting species’ occupancy 
probabilities in bird atlas blocks with little to no observer effort. 
Further, as the landscape covariates added rather little (if any) pre-
dictive power for our test species, models incorporating only spatial 
and effort effects may provide adequate models that circumvent 
a considerable amount of GIS-based analysis required to extract 

landscape covariates, and the subsequent model selection required 
to identify the best predictors. However, because our model testing 
was limited to only six species in a relatively homogenous state (all 
of Pennsylvania is within the Temperate and Broadleaf Mixed Forest 
Biome; Olsen et al., 2001), we caution against assuming that our find-
ings would apply to all species and regions. The reason that our CAR 
models had high predictive power, even when landscape covariates 
were not included, was likely due to the fact that landscape covariates 
were highly spatially autocorrelated between adjacent atlas blocks; 
hence, the spatial component of the model accounted for large-scale 
patterns in land cover.

The model testing based on various percentages of training data 
suggests that our CAR models would be applicable to bird atlas proj-
ects with incomplete coverage. Even for very sparse data (e.g., 25% 
training data for Henslow’s Sparrow, see Fig. S1.5), our predicted 
probability of occupancy map provided a good approximation of 
actual species’ distributions. The main failing of our models was an 
under-prediction of isolated block occurrences that were outside of 
the species’ core range within the state (e.g., Fig. S1.5). However, it is 
likely that for many species, isolated block occurrences away from the 
species’ core ranges represented small and temporally erratic popula-
tions. Hence, if bird atlas data are to be utilized for conservation plan-
ning, correctly demarcating core species’ ranges is critical (Rondinini, 
Wilson, Boitani, Grantham, & Possingham, 2006).

By correcting for survey effort, the number of species assessed 
that expanded their range (block occupancy) rather than show a range 
contraction between PBBA I and PBBA II changed sufficiently to put 
an entirely different complexion on atlas findings. Recorded data sug-
gested that species showing increased block occupancy outnumbered 
those showing decreased block occupancy by more than two to one 
(2.59:1), but after correcting for effort, the ratio was much closer to 
parity (1.25:1). The potential effects of not correcting for survey effort 
to evaluate range shifts have been documented by others (Kujala et al., 
2013). Our analysis supports the need for SDMs that incorporate vari-
ation in observer effort (MacKenzie et al., 2006) to correctly measure 
range shifts.

While our methods show that spatial models can account for vari-
ation in observer effort, there are some limitations to our analysis. 
While the number of effort hours is correlated with the number of 
species detected in an atlas block, there are several other factors that 
could influence the probability that any given species is detected, in-
cluding the efficiency and level of prior experience of observers, the 
number of individual visits within and between years, the diel distri-
bution of survey effort, and the spatial distribution of effort within a 
given block. Observer effort may also be influenced by habitat diver-
sity, with more effort required to survey blocks with diverse habitats.

Another potential limitation to our spatial models is the likely 
presence of anisotropy—that is, directional dependent spatial relation-
ships. The Valley and Ridge Physiographic Province of south-central 
Pennsylvania and much of West Virginia has a pronounced southwest to 
northeast topography, a result of the weathering of belts of rocks from 
repeated by folding and faulting (Fenneman, 1938). This topography 
has a direct impact on land use, with farmland and human development 

F IGURE  5 Comparison of predictive performance on test data, 
as measured by the Point Biserial Correlation coefficient (CORR) of 
models for six species based on 2nd Pennsylvania Breeding Bird Atlas 
data (2004–2009)
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dominating the valleys, and forests on the ridges, and hence valleys and 
ridges have markedly different habitats (Wilson et al., 2012).

Although we included some model selection in our analysis, the 
multitude of candidate models that can be developed from just a 

handful of environmental covariates can be daunting, especially when 
dealing with data from atlas projects that include tens to hundreds 
of species. Other studies have found that broad land use types, ele-
vation, and (for large extents) latitude and longitude explain a large 

F IGURE  6 Training data (left) and predicted probabilities of block occupancy for the Carolina Wren in the 2nd Pennsylvania Breeding Bird 
Atlas. Results of models 1 through 4, top to bottom (see text)

Recorded occupancy, all blocks

Recorded occupancy, random 75% of blocks

Recorded occupancy, random 50% of blocks

Recorded occupancy, random 25% of blocks

Predicted occupancy, based on all blocks

Predicted occupancy, based on random 75% of blocks

Predicted occupancy, based on random 50% of blocks

Predicted occupancy, based on random 25% of blocks
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proportion of the variance in species’ distributions (Storch, Konvicka, 
Benes, Martinkova, & Gaston, 2003). However, our finding that simple 
spatial models—even those without landscape level covariates—per-
form well when making predictions based solely on atlas data empha-
sizes the importance of incorporating spatial autocorrelation into the 
analysis of atlas data.

While there are many methods available to predict species dis-
tributions, including sophisticated methods to account for imper-
fect detection (e.g., Sadoti, Zuckerberg, Jarzyna, & Porter, 2013), 
bird atlas projects are often constrained by limited analytical capa-
bilities (i.e., restricted funds to employ data analysts), and a tight 
deadline to complete analysis for (potentially) 100s of species. 

F IGURE  7 Recorded and predicted probability of block occupancy for the Carolina Wren in the West Virginia Breeding Bird Atlas II

Recorded occupancy
Detected
Not detected, but >1 hr observer effort

Predicted probability of occupancy
<0.25 0.25 – 0.50 0.05 – 0.75 0.75 – 1.0

F IGURE  8 Relationships between block detections in priority blocks and all blocks in the WVBBA II, showing actual data (left), and modeled 
data (right), for 136 species found in 20 or more atlas blocks. Solid black line is the identity line
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In light of those constraints, the relatively simple models used in 
this study offer a practical alternative. Our models for WVBBA II 
data typically converged in less than 10 min on a standard desk-
top computer (Intel Core i7 processor with 3.6 GHz CPU and 16 
GB RAM). The rapidity with which these models can be applied 
would allow for the testing of several competing models, for each 
species (hence 100s or 1000s of models total) within a relatively 
short time-frame.

There has been much discussion about the relative merits of ac-
counting for imperfect detection using occupancy-detection models 
(Guillera-Arroita, 2017). Some studies have shown that occupancy-
detection models perform better for species that are difficult to 
detect, but that gains are, at best, modest for more easily detected 
species (Comte & Grenouillet, 2013; Rota, Fletcher, Evans, & Hutto, 

2010). Hence, for analysis of atlas data where the main aim is to ex-
trapolate species distributions from incomplete surveys (e.g., WVBBA 
II), our approach may be sufficient for readily detected species. For less 
readily detected species, a more sophisticated approach may be nec-
essary, but in those cases, sample sizes (number of block detections) 
may be prohibitively small, anyway.

4.1 | Recommendations

Our results suggest that bird atlas data with incomplete block 
coverage, or uneven effort, can still provide valuable data on spe-
cies’ distributions and distribution change. Relatively simple CAR 
models provide a usefully modeling framework with which to ac-
count for missing data and biases in survey effort. To apply SDM 

F IGURE  9 Recorded (left) and predicted (right) distribution of the Carolina Wren in the PABBA I (top) and PABBA II (middle), and change 
between atlas periods (bottom). Results from model 1 (using all available data, see text)

Recorded Predicted probability

1983–89

2004–09

Change

1983–89

2004–09

Change

<0.2 0.3 – 0.4 0.5 – 0.6 0.7 – 0.8 >0.8

<0.2 0.3 – 0.4 0.5 – 0.6 0.7 – 0.8 >0.8

>0.25 loss
No change

0.26–0.50 gain
0.51–1.00 gain1983–89 only Both 2004–09 only
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approaches that account for spatial variation in survey effort, it is 
critical that effort is comprehensively and accurately quantified. 
Volunteer/surveyor effort hours is now documented by most bird 
atlas projects, but other ways of measuring effort, such as dis-
tance travelled through the sampling unit (Robertson et al., 2010), 
or species accumulation lists (Moreno & Halffter, 2000). With the 
increasing use of online data capture for atlas projects (Robertson 
et al., 2010), the requirement to include a measure of survey ef-
fort with each data submission is a simple addition to online data 
capture forms.

Our analysis of the PABBA II and WVBBA II data revealed 
that total effort hours may not be sufficient for producing effort-
corrected SDMs for species that are active at specific times of the 
days, most notably nocturnal species. While the time of day of ob-
servations was required, along with overall effort hours in the online 
data submission portal for PABBA II, we suspect that nocturnal effort 
hours were under-reported (Wilson et al., 2012). We therefore sug-
gest that the importance of parsing daytime and nocturnal hours is 
emphasized in the future atlas efforts, through communication with 
surveyors and through careful development of recording forms/on-
line portals to document effort hours accordingly. This would also 
allow for the application of occupancy-detection models, which may 
be especially useful for scarce or difficult to detect species (Guillera-
Arroita, 2017).

It is not possible to state a broadly applicable minimum require-
ment for survey effort and block coverage from our analysis. The 
minimum requirement would depend to some extent of habitat het-
erogeneity, species richness, and species’ densities. However, the CAR 
models that we have employed work best when unsurveyed blocks are 
adjacent to blocks with data—hence, large tracts of unsurveyed blocks 
should be avoided. We suggest that our methods be applied to differ-
ent regions, and atlases with a variety of grid sizes and coverage, to 
assess their general applicability. Finally, we encourage data analysts 
to report the CPU time required to run SDMs as a matter of course, 
thereby enabling managers of bird atlases to adequately budget for 
data analysis following data collection.
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